DOI QR코드

DOI QR Code

A Study of Intention to Violate COVID-19 Precautions from the Perspective of the Black Swan Theory

블랙 스완 이론 관점에서 바라본 코로나-19 예방 수칙 위반 의도에 관한 연구

  • Kim, Han-Min (Institute of Management Research, Business School, Sungkyunkwan University)
  • 김한민 (성균관대학교 경영대학 경영연구소)
  • Received : 2021.11.09
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Despite increasing damages caused by violations of COVID-19 precautions, studies on violations of precautions have not yet received much attention. This study identified antecedents that could theoretically influence the intention to violate COVID-19 precautions based on the black swan theory, and collected 215 responses by conducting an online survey from February 11, 2021 to March 10, 2021. As a result of the regression analysis, this study found that dissonance with COVID-19 preventive information, representativeness bias, and availability bias increase the intention to violate COVID-19 precautions. However, optimistic bias did not have a significant effect on the intention to violate precautions. This study not only provides new antecedents but also suggests theoretical evidence for decreasing intention to violate precautions. This study also proposes the necessity to identify differences in violation intention by regions, countries, and theories.

코로나-19 예방 수칙 위반으로 인해 발생하는 피해가 늘어감에도 불구하고 아직까지 예방 수칙 위반에 대한 연구는 크게 조명 받고 있지 않다. 본 연구는 블랙 스완 이론에 기반하여 코로나-19 예방 수칙 위반 의도에 이론적으로 영향을 미칠 수 있는 선행 요인들을 식별하였으며, 2021년 2월 11일부터 2021년 3월 10일까지 온라인 설문 조사를 실시하여 215명의 응답을 수집하였다. 회귀 분석 결과, 예방 수칙에 대한 인식 불일치, 대표성 편향, 가용성 편향이 코로나-19 예방 수칙 위반 의도를 증가시키는 것으로 나타났다. 하지만, 낙관적 편향은 예방 수칙 위반 의도에 유의한 영향을 미치지 않았다. 본 연구는 새로운 선행 요인을 제공할 뿐만 아니라 예방 수칙 위반 의도를 감소시키기 위한 이론적 근거를 제공한다. 또한, 지역, 국가, 이론에 따른 위반 의도의 차이를 규명할 필요성을 제안한다.

Keywords

Acknowledgement

This work was supported by the Postdoctoral Research Program of Sungkyunkwan University(2022)

References

  1. S. Y. Lee. (2021). The impact of Covid-19 on the Performing Arts Sector and the responses needed. Journal of Digital Convergence, 19(3), 453-463. DOI : 10.1440/JDC.2021.19.3.453
  2. H. S. Lee & J. H. Kim. (2021). Analysis of Food Consumption Behavior due to COVID-19 : Focusing on MZ Generation. Journal of Digital Convergence, 19(3), 47-54. DOI : 10.14400/JDC.2021.19.3.047
  3. H. O. Kim, J. S. Kim, J. H. Kim & H. Y. Jo. (2021). In the COVID-19 Environment, the Relationship between Social Support, Resilience and Adaption to College Life of Freshmen at K-University. Journal of Digital Convergence, 19(8), 1-10. DOI : 10.14400/JDC.2021.19.8.001
  4. L. Lam. (2021). COVID-19: 20 People Fined for Attending 44-person Countdown Party at Illegal KTV Outlet. CNA. https://www.channelnewsasia.com/singapore/covid-19-20-fined-year-end-countdown-party-illegal-ktv-outlet-2298006
  5. E. J. Bahk. (2021). Violations of Social Distancing Rules Growing. The Korea Times. https://www.koreatimes.co.kr/www/nation/2021/10/119_316899.html
  6. A. Kim. (2021). Korea's Halloween COVID-19 Warnings Accused of Targeting Foreigners. The Korea Herald. http://www.koreaherald.com/view.php?ud=20211027001063
  7. M. A. Cava, K. E. Fay, H. J. Beanlands, E. A. McCay & R. Wignall. (2005). Risk Perception and Compliance with Quarantine During the SARS Outbreak. Journal of Nursing Scholarship, 37(4), 343-347. DOI : 10.1111/j.1547-5069.20 05.00059.x
  8. S. Hilton & E. Smith. (2010). Public Views of the UK Media and Government Reaction to the 2009 Swine Flu Pandemic. BMC Public Health, 10(1), 1-10. DOI : 10.1186/ 1471-2458-10-697
  9. L. Yardley, S. Miller, E. Teasdale & P. Little. (2011). Using Mixed Methods to Design a Web-based Behavioural Intervention to Reduce Transmission of Colds and Flu. Journal of Health Psychology, 16(2), 353-364. DOI : 10. 1177/1359105310377538 https://doi.org/10.1177/1359105310377538
  10. L. Gray, C. MacDonald, B. Mackie, D. Paton, D. Johnston & M. G. Baker. (2012). Community Responses to Communication Campaigns for Influenza A (H1N1): A Focus Group Study. BMC Public Health, 12(1), 1-12. DOI : 10.1186/1471-2458-12-205
  11. D. Y. Hong, M. A. Jun & C. H. Jo. (2021). Predicting Preventive Behavior Intention in COVID-19 Pandemic Context: Application of Social Variables to Health Belief Model. The Journal of the Korea Contents Association, 21(5), 22-35. DOI : 10.5392/JKCA.2021.21.05.022
  12. L. Gerhold. (2020). COVID-19: Risk Perception and Coping Strategies. PsyArXiv Preprints. https://psyarxiv.com/xmpk4/
  13. Cenfetelli, R. (2004). An Empirical Study of the Inhibitors of Technology Usage. ICIS 2004 Proceedings (pp. 157-170). Washington : AISeL.
  14. R. T. Cenfetelli. (2004). Inhibitors and Enablers as Dual Factor Concepts in Technology Usage. Journal of the Association for Information Systems, 5(11), 472-492. DOI : 10.17705/1jais.00059
  15. R. T. Cenfetelli & A. Schwarz. (2011). Identifying and Testing the Inhibitors of Technology Usage Intentions. Information Systems Research, 22(4), 808-823. DOI : 10.1287/isre.1100.0295
  16. D. H. McKnight. C. J. Kacmar & V. Choudhury. (2004). Dispositional Trust and Distrust Distinctions in Predicting High-and Low-risk Internet Expert Advice Site Perceptions. E-Service, 3(2), 35-58. DOI : 10.2979/esj.2004.3.2.35
  17. R. J. Lewicki, D. J. McAllister & R. J. Bies. (1998). Trust and Distrust: New Relationships and Realities. Academy of Management Review, 23(3), 438-458. DOI : 10.5465/amr.1998.926620
  18. N. N. Taleb. (2007). The Black Swan: The Impact of the Highly Improbable (Vol. 2). Random House.
  19. J. F. Murphy, J. Jones & J. Conner. (2020). The COVID-19 Pandemic: Is It a "Black Swan"? Some Risk Management Challenges in Common with Chemical Process Safety. Process Safety Progress, 39(2), e12160. DOI : 10.1002/prs.12160
  20. S. Mazzoleni, G. Turchetti & N. Ambrosino. (2020). The COVID-19 Outbreak: From "Black Swan" to Global Challenges and Opportunities. Pulmonology, 26(3), 117-118. DOI : 10.1016/j.pulmoe.2020.03.002
  21. T. R. Wind, M. Rijkeboer, G. Andersson & H. Riper. (2020). The COVID-19 Pandemic: The 'Black Swan' for Mental Health Care and a Turning Point for E-health. Internet Interventions, 20, 100317. DOI : 10.1016/j.invent.2020.100317
  22. A. Tversky & D. Kahneman. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124-1131. DOI : 10.1126/science.185.4157.1124
  23. N. D. Weinstein. (1989). Optimistic Biases about Personal Risks. Science, 246(4935), 1232-1234. DOI : 10.1126/science.2686031
  24. R. J. Aldag. (2012). Distinguished Scholar Invited Essay Behavioral Decision Making: Implications for Leadership and Organizations. Journal of Leadership & Organizational Studies, 19(2), 133-141. DOI : 10.1177/1548051812442745
  25. V. Venkatesh, J. Y. Thong & X. Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. DOI : 10.2307/41410412
  26. S. A. Watts & W. Zhang. (2008). Capitalizing on Content: Information Adoption in Two Online Communities. Journal of the Association for Information Systems 9(2), 73-94. DOI : 10.17705/1jais.00149
  27. M. Y. Cheung, C. Luo, C. L. Sia & H. Chen. (2009). Credibility of Electronic Word-of-mouth: Informational and Normative Determinants of Online Consumer Recommendations. International Journal of Electronic Commerce, 13(4), 9-38. DOI : 10.2753/JEC1086-4415130402
  28. S. Z. A. Shah, M. Ahmad & F. Mahmood. (2018). Heuristic Biases in Investment Decision-making and Perceived Market Efficiency: A Survey at the Pakistan Stock Exchange. Qualitative Research in Financial Markets, 10(1), 85-110. DOI : 10.1108/QRFM-04-2017-0033
  29. S. Pahl, P. R. Harris, H. A. Todd & D. R. Rutter. (2005). Comparative Optimism for Environmental Risks. Journal of Environmental Psychology, 25(1), 1-11. DOI : 10.1016/j.jenvp.2004.12.004
  30. S. Hayibor & D. M. Wasieleski. (2009). Effects of the Use of the Availability Heuristic on Ethical Decision-making in Organizations. Journal of Business Ethics, 84(1), 151-165. DOI : 10.1007/s10551-008-9690-7
  31. P. Moravec, R. Minas & A. R. Dennis. (2019). Fake News on Social Media: People Believe What They Want to Believe When it Makes No Sense at All. MIS Quarterly, 43(4), 1343-1360. DOI : 10.25300/MISQ/2019/15505