DOI QR코드

DOI QR Code

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench

이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석

  • Han, Tae-Hee (Department of Semiconductor Engineering, Jungwon University) ;
  • Ko, Seok-Cheol (Industry-University Cooperation Foundation & Regional-Industrial Application Research Institute, Kongju National University) ;
  • Lim, Sung-Hun (Department of Electrical Engineering, Soongsil University)
  • 한태희 (중원대학교 반도체공학과) ;
  • 고석철 (공주대학교 산학협력단 & 지역산업응용연구소) ;
  • 임성훈 (숭실대학교 전기공학과)
  • Received : 2022.01.14
  • Accepted : 2022.01.24
  • Published : 2022.03.01

Abstract

In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Keywords

Acknowledgement

This Work was supported by the Jungwon University Grant for 2020 Research Year and was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2020R1F1A1077206).

References

  1. B. Li, F. Guo, J. Wang, and C. Li, IEEE Trans. Appl. Supercond., 25, 5600805 (2015). [DOI: https://doi.org/10.1109/TASC.2014.2374191]
  2. A. Morandi, Physica C, 484, 242 (2013). [DOI: https://doi.org/10.1016/j.physc.2012.03.004]
  3. H. Yamaguchi, T. Kataoka, K. Yaguchi, S. Fujita, K. Yoshikawa, and K. Kaiho, IEEE Trans. Appl. Supercond., 14, 815 (2004). [DOI: https://doi.org/10.1109/TASC.2004.830284]
  4. S. H. Lim, H. S. Choi, D. C. Chung, Y. H. Jeong, Y. H. Han, T. H. Sung, and B. S. Han, IEEE Trans. Appl. Supercond., 15, 2055 (2005). [DOI: https://doi.org/10.1109/TASC.2005.849450]
  5. S. T. Lim, S. C. Ko, and S. H. Lim, J. Electr. Eng. Technol., 13, 533 (2018). [DOI: http://doi.org/10.5370/JEET.2018.13.2.533]
  6. S. H. Lim, H. S. Choi, and B. S. Han, IEEE Trans. Appl. Supercond., 16, 715 (2006). [DOI: https://doi.org/10.1109/TASC.2006.871269]
  7. S. H. Lim, H. T. Han, Y. S. Cho, H. S. Choi, B. S. Han, and S. W. Lee, Physica C, 463, 1198 (2007). [DOI: http://doi.org/10.1016/j.physc.2007.03.458]
  8. T. H. Han and S. H. Lim, IEEE Trans. Appl. Supercond., 28, 5601705 (2018). [DOI: https://doi.org/10.1109/TASC.2017.2786264]
  9. S. H. Lim, S. C. Ko, and T. H. Han, Physica C, 484, 253 (2013). [DOI: https://doi.org/10.1016/j.physc.2012.03.011]