Acknowledgement
본 연구는 국토교통부 빅데이터 기반 항공안전관리 보안인증 기술개발사업의 연구비 지원(22BDAS-C151631-04)에 의해 수행되었습니다
References
- J. I. Eum, A Study on Legislation for Introducing Aviation Security Equipments Certification System, Master Dissertation, Korea Aerospace University, Gyeonggi-do, Korea (2018).
- W. Lee and K. Lee, Recent Research Trends in Explosive Detection through Electrochemical Methods, Appl. Chem. Eng., 30, 399-407 (2019). https://doi.org/10.14478/ACE.2019.1051
- J. S. Caygill, F. Davis, and S. P. Higson, Current trends in explosive detection techniques, Talanta, 88, 14-29 (2012). https://doi.org/10.1016/j.talanta.2011.11.043
- Reliable Ministry of Government Legislation, Korea Law Information Center, Act No.14954, AVIATION SECURITY ACT [Website], (2021.09.25)
- Chemring Group and Cobham, Global Explosive Detection Equipment Market 2019-2023, TechNavio (Infiniti Research Ltd.)
- J. Yinon, Detection of Explosives by Mass Spectrometry in Counterterrorist Detection Techniques of Explosives, Elsevier, Netherlands (2007).
- Y. Song and R. G. Cooks, Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents, Rapid Commun. Mass Spectrom., 20, 3130-3138 (2006). https://doi.org/10.1002/rcm.2714
- Y. Takada, H. Nagano, M. Suga, Y. Hashimoto, M. Yamada, M. Sakairi, K. Kusumoto, T. Ota, and J. Nakamura, Detection of Military Explosives by Atmospheric Pressure Chemical Ionization Mass Spectrometry with Counter-Flow Introduction, Propellants Explos. Pyrotech., 27, 224-228 (2002). https://doi.org/10.1002/1521-4087(200209)27:4<224::AID-PREP224>3.0.CO;2-V
- C. Mullen, A. Irwin, B. V. Pond, D. L. Huestis, M. J. Coggiola, and H. Oser, Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry, Anal. Chem., 78, 3807-3814 (2006). https://doi.org/10.1021/ac060190h
- R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, Detection Technologies. Ambient mass spectrometry, Science, 311, 1566-1570 (2006). https://doi.org/10.1126/science.1119426
- D. R. Justes, N. Talaty, I. Cotte-Rodriguez, and R. G. Cooks, Detection of explosives on skin using ambient ionization mass spectrometry, Chem. Commun., 2142-2144 (2007).
- I. Cotte-Rodriguez, H. Hernandez-Soto, H. Chen, and R. G. Cooks, In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization, Anal. Chem., 80, 1512-1519 (2008). https://doi.org/10.1021/ac7020085
- Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, Science, 306, 471-473 (2004). https://doi.org/10.1126/science.1104404
- R. B. Cody, J. A. Laramee, and H. D. Durst, Versatile new ion source for the analysis of materials in open air under ambient conditions, Anal. Chem., 77, 2297-2302 (2005). https://doi.org/10.1021/ac050162j
- J. M. Nilles, T. R. Connell, S. T. Stokes, and H. Dupont Durst, Explosives Detection Using Direct Analysis in Real Time (DART) Mass Spectrometry, Propellants Explos. Pyrotech., 35, 446-451 (2010). https://doi.org/10.1002/prep.200900084
- H. Wang, W. Sun, J. Zhang, X. Yang, T. Lin, and L. Ding, Desorption corona beam ionization source for mass spectrometry, Analyst, 135, 688-695 (2010). https://doi.org/10.1039/b922616h
- R. M. Alberici, R. C. Simas, G. B. Sanvido, W. Romao, P. M. Lalli, M. Benassi, I. B. Cunha, and M. N. Eberlin, Ambient mass spectrometry: bringing MS into the "real world", Anal. Bioanal. Chem., 398, 265-294 (2010). https://doi.org/10.1007/s00216-010-3808-3
- F. M. Green, T. L. Salter, P. Stokes, I. S. Gilmore, and G. O'Connor, Ambient mass spectrometry: advances and applications in forensics, Surf. Interface Anal., 42, 347-357 (2010). https://doi.org/10.1002/sia.3131
- M. G. Blain, L. S. Riter, D. Cruz, D. E. Austin, G. Wu, W. R. Plass, and R. G. Cooks, Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps, Int. J. Mass Spectrom., 236, 91-104 (2004). https://doi.org/10.1016/j.ijms.2004.06.011
- C. C. Mulligan, N. Talaty, and R. G. Cooks, Desorption electrospray ionization with a portable mass spectrometer: in situ analysis of ambient surfaces, Chem. Commun., 1709-1711 (2006).
- N. L. Sanders, S. Kothari, G. Huang, G. Salazar, and R. G. Cooks, Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer, Anal. Chem., 82, 5313-5316 (2010). https://doi.org/10.1021/ac1008157
- J. M. Wells, M. J. Roth, A. D. Keil, J. W. Grossenbacher, D. R. Justes, G. E. Patterson, and D. J. Barket, Jr., Implementation of DART and DESI ionization on a fieldable mass spectrometer, J. Am. Soc. Mass Spectrom., 19, 1419-1424 (2008). https://doi.org/10.1016/j.jasms.2008.06.028
- E. Schramm, J. Holzer, M. Putz, R. Schulte-Ladbeck, R. Schultze, M. Sklorz, A. Ulrich, J. Wieser, and R. Zimmermann, Real-time trace detection of security-relevant compounds in complex sample matrices by thermal desorption-single photon ionization-ion trap mass spectrometry (TD-SPI-ITMS), Anal. Bioanal. Chem., 395, 1795-1807 (2009). https://doi.org/10.1007/s00216-009-2916-4
- M. R. Leahy-Hoppa, M. J. Fitch, and R. Osiander, Terahertz spectroscopy techniques for explosives detection, Anal. Bioanal. Chem., 395, 247-257 (2009). https://doi.org/10.1007/s00216-009-2803-z
- D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?, Proc. IEEE, 93, 1722-1743 (2005). https://doi.org/10.1109/JPROC.2005.853539
- H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, Terahertz Spectroscopy and Imaging for Defense and Security Applications, Proc. IEEE, 95, 1514-1527 (2007). https://doi.org/10.1109/JPROC.2007.898903
- J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security Applications-explosives, weapons and drugs, Semicond. Sci. Technol., 20, S266-S280 (2005). https://doi.org/10.1088/0268-1242/20/7/018
- H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, Detection and identification of explosive RDX by THz diffuse reflection spectroscopy, Opt. Express, 14, 415-423 (2006). https://doi.org/10.1364/OPEX.14.000415
- J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X. C. Zhang, Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz, Opt. Express, 15, 12060-12067 (2007). https://doi.org/10.1364/OE.15.012060
- M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, Wideband terahertz spectroscopy of explosives, Chem. Phys. Lett., 434, 227-230 (2007). https://doi.org/10.1016/j.cplett.2006.12.015
- T. Lo, I. S. Gregory, C. Baker, P. F. Taday, W. R. Tribe, and M. C. Kemp, The very far-infrared spectra of energetic materials and possible confusion materials using terahertz pulsed spectroscopy, Vib. Spectrosc., 42, 243-248 (2006). https://doi.org/10.1016/j.vibspec.2006.03.002
- O. M. Primera-Pedrozo, Y. M. Soto-Feliciano, L. C. PachecoLondono, and S. P. Hernandez-Rivera, Detection of High Explosives Using Reflection Absorption Infrared Spectroscopy with Fiber Coupled Grazing Angle Probe/FTIR, Sens. Imaging, 10, 1-13 (2009). https://doi.org/10.1007/s11220-009-0042-1
- Y. Mou and J. W. Rabalais, Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy, J. Forensic Sci., 54, 846-850 (2009). https://doi.org/10.1111/j.1556-4029.2009.01060.x
- J. L. Gottfried, F. C. De Lucia, Jr., C. A. Munson, and A. W. Miziolek, Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects, Anal. Bioanal. Chem., 395, 283-300 (2009). https://doi.org/10.1007/s00216-009-2802-0
- P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy, Spectrochim. Acta B, 66, 12-20 (2011). https://doi.org/10.1016/j.sab.2010.11.012
- F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination, Spectrochim. Acta B, 62, 1399-1404 (2007). https://doi.org/10.1016/j.sab.2007.10.036
- C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schippers, J. Burgmeier, U. Willer, G. Holl, and W. Schade, All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis, Spectrochim. Acta B, 62, 1519-1527 (2007). https://doi.org/10.1016/j.sab.2007.10.038
- R. G. Ewing, D. A. Atkinson, G. A. Eiceman, and G. J. Ewing, A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds, Talanta, 54, 515-529 (2001). https://doi.org/10.1016/S0039-9140(00)00565-8
- R. G. Ewing and M. J. Waltman, Mechanisms for negative reactant ion formation in an atmospheric pressure corona discharge, Int. J. Ion Mobil. Spectrom., 12, 65-72 (2009). https://doi.org/10.1007/s12127-009-0019-8
- M. J. Waltman, P. Dwivedi, H. H. Hill, Jr., W. C. Blanchard, and R. G. Ewing, Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry, Talanta, 77, 249-255 (2008). https://doi.org/10.1016/j.talanta.2008.06.014
- M. Tabrizchi and V. Ilbeigi, Detection of explosives by positive corona discharge ion mobility spectrometry, J. Hazard. Mater., 176, 692-696 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.087
- J. S. Babis, R. P. Sperline, A. K. Knight, D. A. Jones, C. A. Gresham, and M. B. Denton, Performance evaluation of a miniature ion mobility spectrometer drift cell for application in hand-held explosives detection ion mobility spectrometers, Anal. Bioanal. Chem., 395, 411-419 (2009). https://doi.org/10.1007/s00216-009-2818-5
- S. Zimmermann, N. Abel, W. Baether, and S. Barth, An ion-focusing aspiration condenser as an ion mobility spectrometer, Sens. Actuators B Chem., 125, 428-434 (2007). https://doi.org/10.1016/j.snb.2007.02.038
- M. Martin, M. Crain, K. Walsh, R. A. McGill, E. Houser, J. Stepnowski, S. Stepnowski, H.-D. Wu, and S. Ross, Microfabricated vapor preconcentrator for portable ion mobility spectroscopy, Sens. Actuators B Chem., 126, 447-454 (2007). https://doi.org/10.1016/j.snb.2007.03.040
- A. B. Kanu, C. Wu, and H. H. Hill, Jr., Rapid preseparation of interferences for ion mobility spectrometry, Anal. Chim. Acta, 610, 125-134 (2008). https://doi.org/10.1016/j.aca.2007.08.024
- F. W. Karasek and D. W. Denney, Detection of 2,4,6-trinitrotoluene vapours in air by plasma chromatography, J. Chromatogr., 93, 141-147 (1974). https://doi.org/10.1016/S0021-9673(00)83025-3
- E. L. Izake, Forensic and homeland security applications of modern portable Raman spectroscopy, Forensic Sci. Int., 202, 1-8 (2010). https://doi.org/10.1016/j.forsciint.2010.03.020
- D. S. Moore and R. J. Scharff, Portable Raman explosives detection, Anal. Bioanal. Chem., 393, 1571-1578 (2009). https://doi.org/10.1007/s00216-008-2499-5
- L. C. Pacheco-Londono, W. Ortiz-Rivera, O. M. Primera-Pedrozo, and S. P. Hernandez-Rivera, Vibrational spectroscopy standoff detection of explosives, Anal. Bioanal. Chem., 395, 323-335 (2009). https://doi.org/10.1007/s00216-009-2954-y
- A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Ostmark, Near Real-Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55 m Distance, Propellants Explos. Pyrotech., 34, 297-306 (2009). https://doi.org/10.1002/prep.200800055
- Y. Fleger, L. Nagli, M. Gaft, and M. Rosenbluh, Narrow gated Raman and luminescence of explosives, J. Lumin., 129, 979-983 (2009). https://doi.org/10.1016/j.jlumin.2009.04.008
- A. Portnov, I. Bar, and S. Rosenwaks, Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering, Appl. Phys. B, 98, 529-535 (2009). https://doi.org/10.1007/s00340-009-3709-3
- E. M. A. Ali, H. G. M. Edwards, M. D. Hargreaves, and I. J. Scowen, Detection of explosives on human nail using confocal Raman microscopy, J. Raman Spectrosc., 40, 144-149 (2009). https://doi.org/10.1002/jrs.2096
- E. M. Ali, H. G. Edwards, and I. J. Scowen, In-situ detection of single particles of explosive on clothing with confocal Raman microscopy, Talanta, 78, 1201-1203 (2009). https://doi.org/10.1016/j.talanta.2008.12.038
- E. M. A. Ali, H. G. M. Edwards, and I. J. Scowen, Raman spectroscopy and security applications: the detection of explosives and precursors on clothing, J. Raman Spectrosc., 40, 2009-2014 (2009). https://doi.org/10.1002/jrs.2360
- B. A. Paldus and A. A. Kachanov, An historical overview of cavity-enhanced methods, Can. J. Phys., 83, 975-999 (2005). https://doi.org/10.1139/p05-054
- G. Berden, R. Peeters, and G. Meijer, Cavity ring-down spectroscopy: Experimental schemes and applications, Int. Rev. Phys. Chem., 19, 565-607 (2010). https://doi.org/10.1080/014423500750040627
- C. Ramos and P. J. Dagdigian, Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy, Appl. Opt., 46, 620-627 (2007). https://doi.org/10.1364/AO.46.000620
- C. Ramos and P. J. Dagdigian, Effect of photochemistry on molecular detection by cavity ringdown spectroscopy: case study of an explosive-related compound, Appl. Opt., 46, 6526-6532 (2007). https://doi.org/10.1364/AO.46.006526
- S. J. Peppernick, K. D. Dasitha Gunaratne, and A. W. Castleman, Towards comprehending the superatomic state of matter, Chem. Phys. Lett., 489, 1-11 (2010). https://doi.org/10.1016/j.cplett.2010.02.037
- C. F. Bernasconi, Kinetic and spectral study of some reactions of 2, 4, 6-trinitrotoluene in basic solution. I. Deprotonation and Janovsky complex formation, J. Org. Chem., 36, 1671-1679 (1971). https://doi.org/10.1021/jo00811a022
- Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, Supersensitive detection of explosives by silicon nanowire arrays, Angew. Chem. Int. Ed., 49, 6830-6835 (2010). https://doi.org/10.1002/anie.201000847
- D. Gao, Z. Wang, B. Liu, L. Ni, M. Wu, and Z. Zhang, Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT, Anal. Chem., 80, 8545-8553 (2008). https://doi.org/10.1021/ac8014356
- F. Wang, W. Wang, B. Liu, Z. Wang, and Z. Zhang, Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultra-trace trinitrotoluene, Talanta, 79, 376-382 (2009). https://doi.org/10.1016/j.talanta.2009.03.062
- C.-L. Yuan, C.-P. Chang, Y.-S. Hong, and Y. J. M. S.-P. Sung, Fabrication of MWNTs-PANI composite-a chemiresistive sensor material for the detection of explosive gases, Mater. Sci.-Pol., 27, 509-520 (2009).
- A. Diaz Aguilar, E. S. Forzani, M. Leright, F. Tsow, A. Cagan, R. A. Iglesias, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, A hybrid nanosensor for TNT vapor detection, Nano Lett., 10, 380-384 (2010). https://doi.org/10.1021/nl902382s
- S. Singh, Sensors-an effective approach for the detection of explosives, J. Hazard. Mater., 144, 15-28 (2007). https://doi.org/10.1016/j.jhazmat.2007.02.018
- S. Moon, D. K. Charyulu, W. Lee, and K. Lee, Controlling the geometric design of anodic 1D TiO2 nanotubes for the electrochemical reduction of 2,4,6-trinitrotoluene in ambient conditions, J. Electroanal. Chem., 900, 115717 (2021). https://doi.org/10.1016/j.jelechem.2021.115717
- J. Wang, Analytical Electrochemistry: Study of electrode reactions and interfacial properties, Wiley (2006).
- L. Agui, D. Vega-Montenegro, P. Yanez-Sedeno, and J. M. Pingarron, Rapid voltammetric determination of nitroaromatic explosives at electrochemically activated carbon-fibre electrodes, Anal. Bioanal. Chem., 382, 381-387 (2005). https://doi.org/10.1007/s00216-004-3017-z
- G. Shi, Y. Qu, Y. Zhai, Y. Liu, Z. Sun, J. Yang, and L. Jin, {MSU/PDDA}n LBL assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds, Electrochem. Commun., 9, 1719-1724 (2007). https://doi.org/10.1016/j.elecom.2007.03.019
- X.-C. Fu, X. Chen, J. Wang, J.-H. Liu, and X.-J. Huang, Amino functionalized mesoporous silica microspheres with perpendicularly aligned mesopore channels for electrochemical detection of trace 2,4,6-trinitrotoluene, Electrochim. Acta, 56, 102-107 (2010). https://doi.org/10.1016/j.electacta.2010.09.045
- J. Zang, C. X. Guo, F. Hu, L. Yu, and C. M. Li, Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon, Anal. Chim. Acta, 683, 187-191 (2011). https://doi.org/10.1016/j.aca.2010.10.019
- K. Cizek, C. Prior, C. Thammakhet, M. Galik, K. Linker, R. Tsui, A. Cagan, J. Wake, J. La Belle, and J. Wang, Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor, Anal. Chim. Acta, 661, 117-121 (2010). https://doi.org/10.1016/j.aca.2009.12.008
- J. Wang, Electrochemical Sensing of Explosives, Electroanalysis, 19, 415-423 (2007). https://doi.org/10.1002/elan.200603748
- D. Lu, A. Cagan, R. A. Munoz, T. Tangkuaram, and J. Wang, Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue 'artificial-peroxidase' modified electrode, Analyst, 131, 1279-1281 (2006). https://doi.org/10.1039/b613092e
- S. Parajuli and W. Miao, Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate, Anal. Chem., 81, 5267-5272 (2009). https://doi.org/10.1021/ac900489a
- J. Wang and M. Pumera, Microchip flow-injection analysis of trace 2,4,6-trinitrotoluene (TNT) using mercury-amalgam electrochemical detector, Talanta, 69, 984-987 (2006). https://doi.org/10.1016/j.talanta.2005.12.001
- J. C. Chen, J. L. Shih, C. H. Liu, M. Y. Kuo, and J. M. Zen, Disposable electrochemical sensor for determination of nitro-aromatic compounds by a single-run approach, Anal. Chem., 78, 3752-3757 (2006). https://doi.org/10.1021/ac060002n
- V. Bhalla, X. Zhao, and V. Zazubovich, Detection of explosive compounds using Photosystem II-based biosensor, J. Electroanal. Chem., 657, 84-90 (2011). https://doi.org/10.1016/j.jelechem.2011.03.026
- L. Yu, Y. Huang, X. Jin, A. J. Mason, and X. Zeng, Ionic liquid thin layer EQCM explosives sensor, Sens. Actuators B Chem., 140, 363-370 (2009). https://doi.org/10.1016/j.snb.2009.04.038
- M. S. Meaney and V. L. McGuffin, Luminescence-based methods for sensing and detection of explosives, Anal. Bioanal. Chem., 391, 2557-2576 (2008). https://doi.org/10.1007/s00216-008-2194-6
- H. Du, G. He, T. Liu, L. Ding, and Y. Fang, Preparation of pyrene-functionalized fluorescent film with a benzene ring in spacer and sensitive detection to picric acid in aqueous phase, J. Photochem. Photobiol., A, 217, 356-362 (2011). https://doi.org/10.1016/j.jphotochem.2010.11.004
- M. P. Monterola, B. W. Smith, N. Omenetto, and J. D. Winefordner, Photofragmentation of nitro-based explosives with chemiluminescence detection, Anal. Bioanal. Chem., 391, 2617-2626 (2008). https://doi.org/10.1007/s00216-008-2177-7
- S. J. Toal, J. C. Sanchez, R. E. Dugan, and W. C. Trogler, Visual detection of trace nitroaromatic explosive residue using photo-luminescent metallole-containing polymers, J. Forensic Sci., 52, 79-83 (2007). https://doi.org/10.1111/j.1556-4029.2006.00332.x
- G. H. Shi, Z. B. Shang, Y. Wang, W. J. Jin, and T. C. Zhang, Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds, Spectrochim. Acta A, 70, 247-252 (2008). https://doi.org/10.1016/j.saa.2007.07.054
- M. Algarra, B. B. Campos, M. S. Miranda, and J. C. da Silva, CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds, Talanta, 83, 1335-1340 (2011). https://doi.org/10.1016/j.talanta.2010.10.056
- A. Ponnu and E. V. Anslyn, A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives, Supramol. Chem., 22, 65-71 (2010). https://doi.org/10.1080/10610270903378032
- J. C. Sanchez, S. J. Toal, Z. Wang, R. E. Dugan, and W. C. Trogler, Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor, J. Forensic Sci., 52, 1308-1313 (2007).
- J. C. Sanchez, A. G. DiPasquale, A. L. Rheingold, and W. C. Trogler, Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers, Chem. Mater., 19, 6459-6470 (2007). https://doi.org/10.1021/cm702299g
- J. C. Sanchez and W. C. Trogler, Efficient blue-emitting silafluorene-fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives, J. Mater. Chem., 18, 3143-3156 (2008). https://doi.org/10.1039/b802623h
- T. Caron, M. Guillemot, P. Montmeat, F. Veignal, F. Perraut, P. Prene, and F. Serein-Spirau, Ultra trace detection of explosives in air: development of a portable fluorescent detector, Talanta, 81, 543-548 (2010). https://doi.org/10.1016/j.talanta.2009.12.040
- T. Caron, S. Clavaguera, M. Huron, P. Montmeat, E. Pasquinet, J.-P. Lere-Porte, F. Serein-Spirau, F. Perraut, and P. J. C. E. T. Prene, Detection of explosive vapors: development and performances of a fluorescence sensor, Chem. Eng. Trans., 23, 25-30 (2010).
- M. D. Woodka, V. P. Schnee, and M. P. Polcha, Fluorescent polymer sensor array for detection and discrimination of explosives in water, Anal. Chem., 82, 9917-9924 (2010). https://doi.org/10.1021/ac102504t
- R. G. Smith, N. D'Souza, and S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection, Analyst, 133, 571-584 (2008). https://doi.org/10.1039/b717933m
- G. P. Anderson, S. C. Moreira, P. T. Charles, I. L. Medintz, E. R. Goldman, M. Zeinali, and C. R. Taitt, TNT detection using multiplexed liquid array displacement immunoassays, Anal. Chem., 78, 2279-2285 (2006). https://doi.org/10.1021/ac051995c
- G. P. Anderson, M. Moore, P. T. Charles, and E. R. Goldman, Bead-Based Fluid Array Detection of Pentaerythritol Tetranitrate: Comparison of Monoclonal vs. Llama Polyclonal Antibodies, Anal. Lett., 43, 2913-2922 (2010). https://doi.org/10.1080/00032711003763699
- K. Nagatomo, T. Kawaguchi, N. Miura, K. Toko, and K. Matsumoto, Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface, Talanta, 79, 1142-1148 (2009). https://doi.org/10.1016/j.talanta.2009.02.018
- P. Singh, T. Onodera, Y. Mizuta, K. Matsumoto, N. Miura, and K. Toko, Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: Fabrication and advantages, Sens. Actuators B Chem., 137, 403-409 (2009). https://doi.org/10.1016/j.snb.2008.12.027
- K. Furton, The scientific foundation and efficacy of the use of canines as chemical detectors for explosives, Talanta, 54, 487-500 (2001). https://doi.org/10.1016/S0039-9140(00)00546-4
- I. Gazit and J. Terkel, Explosives detection by sniffer dogs following strenuous physical activity, Appl. Anim. Behav. Sci., 81, 149-161 (2003). https://doi.org/10.1016/S0168-1591(02)00274-5
- J. Otto, M. F. Brown, and W. Long, Training rats to search and alert on contraband odors, Appl. Anim. Behav. Sci., 77, 217-232 (2002). https://doi.org/10.1016/S0168-1591(02)00052-7
- B. Marshall, C. G. Warr, and M. de Bruyne, Detection of volatile indicators of illicit substances by the olfactory receptors of Drosophila melanogaster, Chem. Senses, 35, 613-625 (2010). https://doi.org/10.1093/chemse/bjq050
- R. Glatz and K. Bailey-Hill, Mimicking nature's noses: from receptor deorphaning to olfactory biosensing, Prog. Neurobiol., 93, 270-296 (2011). https://doi.org/10.1016/j.pneurobio.2010.11.004
- J. Yinon, Peer Reviewed: Detection of Explosives by Electronic Noses, Anal. Chem., 75, 98 A-105 A (2003). https://doi.org/10.1021/ac020428b
- S. E. Stitzel, L. J. Cowen, K. J. Albert, and D. R. Walt, Array-to-array transfer of an artificial nose classifier, Anal. Chem., 73, 5266-5271 (2001). https://doi.org/10.1021/ac010111w
- M. E. Koscho, R. H. Grubbs, and N. S. Lewis, Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites, Anal. Chem., 74, 1307-1315 (2002). https://doi.org/10.1021/ac011054+
- H. Wohltjen and R. Dessy, Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal. Chem., 51, 1458-1464 (2002). https://doi.org/10.1021/ac50045a024