• 제목/요약/키워드: Explosive-related compound

검색결과 3건 처리시간 0.019초

폭약살포 높이에 따른 Al/steel 폭발 접합계면의 형상 및 조직 변화에 관한 연구 (A Study on the Shape and Microstructural Change of Explosion-Welding Al/Steel Interface with Explosive Thickness)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.62-70
    • /
    • 1996
  • Al or Al-alloy have been known to be able to be claded on various materials by using explosive welding process, however, the intermetallic layer frequently formed along the interface have made this process very complicated. In this study, it was focussed to select the process variables, which can get rid of interfacial layer in the Al-claded steel plate. As a result, it was demonstrated that there was a certain range of explosive thickness which did not form the intermetallic phase as well as the non-bonded area. On the other hand, ultasonic tests performed for identifying the presence of interfacial layer nondestructively showed that it could be applied for the intended purpose but its result was weakly related with the microstructural quality of interface.

  • PDF

화학분석 기반 폭발물 탐지 기술 동향 (Research Trends in Chemical Analysis Based Explosive Detection Techniques)

  • 문상현;이원주;이기영
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.1-10
    • /
    • 2022
  • 본 논문은 주요 폭발물 탐지 기술에 대한 원리, 장단점 및 향후 필요한 연구 분야에 대한 총설이다. 폭발물 탐지 기술은 분광학적 방법(spectroscopic methods), 감지기 기술(sensor techniques), 후각 감지기(olfactory type sensors)로 분류할 수 있다. 이러한 탐지 기술은 많은 발전이 있었지만 폭발물 탐지를 위한 판별성, 휴대성, 감도에 관한 연구 가능성이 높은 것으로 보인다.

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.