DOI QR코드

DOI QR Code

LARGE TIME BEHAVIOR TO THE 2D MICROPOLAR BOUSSINESQ FLUIDS

  • XUEWEN, WANG (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES) ;
  • KEKE, LEI (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES) ;
  • PIGONG, HAN (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES)
  • Received : 2022.11.18
  • Accepted : 2022.12.11
  • Published : 2022.12.25

Abstract

In this paper, we prove the global existence of classical solutions to the 2D incompressible Boussinesq equations for the micropolar fluid. Furthermore, applying the Fourier splitting methods, we obtain the lager time decay properties.

Keywords

Acknowledgement

This work is supported by the National Key R&D Program of China (2021YFA1000800) and the K.C.Wong Education Foundation, Chinese Academy of Sciences.

References

  1. B. Dong, J. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523. https://doi.org/10.1016/j.jde.2016.11.029
  2. B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162. https://doi.org/10.3934/dcds.2018180
  3. D. Wang, J. Wu and Z. Ye, Global regularity of the three-dimensional fractional micropolar equations, J. Math. Fluid Mech., 22 (2020), 36 pp. https://doi.org/10.1007/s00021-020-00499-2
  4. D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-515. https://doi.org/10.1016/j.aim.2005.05.001
  5. D. Chae and J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities, Adv. Math., 230 (2012), 1618-1645. https://doi.org/10.1016/j.aim.2012.04.004
  6. Z. Ye, A logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations, Osaka J. Math., 53 (2016), 417-423.
  7. M. E. Schonbek, L2 decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209-222. https://doi.org/10.1007/BF00752111
  8. R. H. Guterres, J. R. Nunes and C. F. Perusato, On the large time decay of global solutions for the micropolar dynamics in L2(Rn), Nonlinear Anal. Real World Appl., 45 (2019), 789-798. https://doi.org/10.1016/j.nonrwa.2018.08.002
  9. Y. Guo, Y. Jia and B. Dong, Time decay rates of the micropolar equations with zero angular viscosity, Bull. Malays. Math. Sci. Soc., 44 (2021), 3663-3675. https://doi.org/10.1007/s40840-021-01138-3
  10. H. Ye, Q. Wang and Y. Jia, Well-posedness and large time decay for the 3D micropolar equations with only velocity dissipation, Nonlinear Anal., 219 (2022), Paper No. 112796, 25 pp.
  11. L. Brandolese and M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Amer. Math. Soc., 364 (2012), 5057-5090. https://doi.org/10.1090/S0002-9947-2012-05432-8
  12. H. O. Bae and H. J. Choe, Decay rate for the incompressible flows in half spaces, Math. Z., 238 (2001), 799-816. https://doi.org/10.1007/s002090100276
  13. H. O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations, 209 (2005), 365-391. https://doi.org/10.1016/j.jde.2004.09.011
  14. H. O. Bae and B. J. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., 240 (2006), 508-529. https://doi.org/10.1016/j.jfa.2006.04.029
  15. H. O. Bae and B. J. Jin, Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains, Bull. Korean Math. Soc., 44 (2007), 547-567. https://doi.org/10.4134/BKMS.2007.44.3.547
  16. C. He and D. Zhou, Existence and asymptotic behavior for an incompressible Newtonian flow with intrinsic degree of freedom, Math. Methods Appl. Sci., 37 (2014), 1191-1205. https://doi.org/10.1002/mma.2880
  17. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. https://doi.org/10.1002/cpa.3160410704
  18. H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, New York, 1989.
  19. H. Sohr, The Navier-Stokes equations: an elementary functional analytic approach, Birkhauser Advanced Texts, 2001.
  20. R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.