Browse > Article
http://dx.doi.org/10.12941/jksiam.2022.26.224

LARGE TIME BEHAVIOR TO THE 2D MICROPOLAR BOUSSINESQ FLUIDS  

XUEWEN, WANG (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES)
KEKE, LEI (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES)
PIGONG, HAN (ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.26, no.4, 2022 , pp. 224-243 More about this Journal
Abstract
In this paper, we prove the global existence of classical solutions to the 2D incompressible Boussinesq equations for the micropolar fluid. Furthermore, applying the Fourier splitting methods, we obtain the lager time decay properties.
Keywords
Boussinesq equations; micropolar fluid; existence; decay properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Dong, J. Li and J. Wu, Global well-posedness and large-time decay for the 2D micropolar equations, J. Differential Equations, 262 (2017), 3488-3523.   DOI
2 B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, Discrete Contin. Dyn. Syst., 38 (2018), 4133-4162.   DOI
3 D. Wang, J. Wu and Z. Ye, Global regularity of the three-dimensional fractional micropolar equations, J. Math. Fluid Mech., 22 (2020), 36 pp.   DOI
4 D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-515.   DOI
5 D. Chae and J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities, Adv. Math., 230 (2012), 1618-1645.   DOI
6 Z. Ye, A logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations, Osaka J. Math., 53 (2016), 417-423.
7 M. E. Schonbek, L2 decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209-222.   DOI
8 R. H. Guterres, J. R. Nunes and C. F. Perusato, On the large time decay of global solutions for the micropolar dynamics in L2(Rn), Nonlinear Anal. Real World Appl., 45 (2019), 789-798.   DOI
9 Y. Guo, Y. Jia and B. Dong, Time decay rates of the micropolar equations with zero angular viscosity, Bull. Malays. Math. Sci. Soc., 44 (2021), 3663-3675.   DOI
10 H. Ye, Q. Wang and Y. Jia, Well-posedness and large time decay for the 3D micropolar equations with only velocity dissipation, Nonlinear Anal., 219 (2022), Paper No. 112796, 25 pp.
11 L. Brandolese and M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Amer. Math. Soc., 364 (2012), 5057-5090.   DOI
12 H. O. Bae and H. J. Choe, Decay rate for the incompressible flows in half spaces, Math. Z., 238 (2001), 799-816.   DOI
13 H. O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations, 209 (2005), 365-391.   DOI
14 T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.   DOI
15 H. O. Bae and B. J. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., 240 (2006), 508-529.   DOI
16 H. O. Bae and B. J. Jin, Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains, Bull. Korean Math. Soc., 44 (2007), 547-567.   DOI
17 C. He and D. Zhou, Existence and asymptotic behavior for an incompressible Newtonian flow with intrinsic degree of freedom, Math. Methods Appl. Sci., 37 (2014), 1191-1205.   DOI
18 H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, New York, 1989.
19 H. Sohr, The Navier-Stokes equations: an elementary functional analytic approach, Birkhauser Advanced Texts, 2001.
20 R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.