DOI QR코드

DOI QR Code

흡입용 PEMWE형 수소 발생기에서 증류수 공급 방법이 성능에 미치는 영향

Effect of Distilled Water Supply Method on Performance of PEMWE Typed Hydrogen Generators for Inhalation

  • 투고 : 2022.10.15
  • 심사 : 2022.11.21
  • 발행 : 2022.11.30

초록

The present study has investigated the performance of hydrogen gas generators for inhalation purposes based on polyelectrolyte membrane water electrolysis (PEMWE). The system applied two watering methods. One is pumped water (pumping system) and the other is gravity-fed water without a pump (non-pumping system). The cell efficiencies were compared by measuring the cell voltage and temperature in the hydrogen gas generator, respectively. The results show that the cell voltage and temperature increase with the cell current. The cell temperature is lower in the pumping system than that in the non-pumping system at a given cell current. Even though the amount of hydrogen production is the same regardless of the pumping system, the cell efficiency of the hydrogen gas generator in the non-pumping system is better than that in the pumping system.

키워드

과제정보

이 연구는 전기분해에 의한 소독제 생성과 연관되어 진행한 사전 수행으로 2022년 한국연구재단 개인기초연구사업(기본연구) 과제번호 2022R1F1A1071016와 IoT제어기반의 혈관성치매 치료보조용 수소가스 흡입장치 개발을 위해 진행한 연구로 2021년 중소기벤처기업부 중소기업기술개발지원사업 (과제번호 S3079758)의 연구비 지원으로 수행되었습니다.

참고문헌

  1. Shin, H. J. and Park, G. W., 2019, "CFD Analysis of a 2-Stage Air Compressor for a Hydrogen Electric Car," Journal of the Korean Society of Manufacturing Technology Engineers, Vol. 28(6), pp.453-459. https://doi.org/10.7735/ksmte.2019.28.6.453
  2. Guan, W.-J., Wei, C.-H., Chen, A._L., Sun, X.-C., Guang-Yun Guo, G.-Y., Zou, X., Shi, J.-D., Lai, P.-Z., Zheng, Z.-G. and Zhong, N.-S., 2020, "Hydrogen/Oxygen Mixed Gas Inhalation Improves Disease Severity and Dyspnea in Patients with Coronavirus Disease 2019 in a Recent Multicenter," Journal of Thoracic Disease, Vol. 12(6), pp.3448-3452. https://doi.org/10.21037/jtd-2020-057
  3. Ohsawa, I., Ishikawa M., Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura, K.-I., Katayama, Y., Asoh, S. and Ohta, S., 2007, "Hydrogen Acts as a Therapeutic Antioxidant by Selectively Reducing Cytotoxic Oxygen Radicals," Nature Medicine, Vol. 13, pp.688-694. https://doi.org/10.1038/nm1577
  4. Li, J., Wang, C., Zhang, J. H., Cai, J.-M., Cao, Y.-P. and Sun X.-J., 2010, "Hydrogen-Rich Saline Improves Memory Function in a Rat Model of Amyloid-Beta-Induced Alzheimer's Disease by Reduction of Oxidative Stress," Brain Research, Vol. 1328, pp.152-161. https://doi.org/10.1016/j.brainres.2010.02.046
  5. Xie, K., Yu, Y., Zhang, Z., Liu, W., Pei, Y., Xiang, L., Hou, L. and Wang, G., 2010, "Hydrogen Gas Improves Survival Rate and Organ Damage in Zymosan-Induced Generalized Inflammation Model," Shock, Vol. 34(5), pp.495-501. https://doi.org/10.1097/SHK.0b013e3181def9aa
  6. Yang, Y., Li, B., Liu, C., Chuai, Y., Lei, J., Gao, F., Cui, J., Sun, D., Cheng, Y., Zhou, C. and Cai, J., 2012, "Hydrogen-Rich Saline Protects Immunocytes from Radiation-Induced Apoptosis," Med Sci Monit., Vol. 18(4), pp.BR144-148. https://doi.org/10.12659/MSM.882616
  7. Song, G., Li, M., Sang, H., Zhang, L., Li, X., Yao, S., Yu, Y., Zong, C., Xue, Y. and Qin, S., 2013, "Hydrogen-Rich Water Decrease Serum Low-Density Lipoprotein Cholesterol Levels and Improves High-Density Lipoprotein Function in Patients with Potential Metabolic Syndrome," Journal of Lipid Research, Vol. 54(7), pp.1884-1893. https://doi.org/10.1194/jlr.M036640
  8. Itoh, T., Fujita, Y., Itoh, M., Masuda, A., Ohno, K., Ichihara, M., Kojima, T., Nozawa, Y. and Ito, M., 2009, "Molecular Hydrogen Suppresses FceRI-Mediated Signal Transduction and Prevents Degranulation of Mast Cells," Biochem Biophys Res Commun, Vol. 389(4), pp.651-656. https://doi.org/10.1016/j.bbrc.2009.09.047
  9. Ishibashi, T., Ichikawa, M., Sato, B., Shibata, S., Hara, Y., Naritomi, Y., Iwamoto, Y., Koyanagi, S. and Hara, H., 2015, "Improvement of Psoriasis-Associated Arthritis and Skin Lesions by Treatment with Molecular Hydrogen: A Report of Three Cases," Molecular Medicine. Reports, Vol. 12(2), pp.2757-2764. https://doi.org/10.3892/mmr.2015.3707
  10. Kim, D., Zhu, L., Shannon, M. A. and Masel, R. I., 2008, "A Micro PEM Fuel Cell System Including a Hydrogen Generator," Korean Society for New and renewable Energy Spring Conference, pp.558-559.
  11. Holladay, J. D., Hu, J., King, D. L. and Wang, Y., 2009, "An Overview of Hydrogen Production Technologies," Catalysis Today, Vol. 139(4), pp.244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  12. Rashid, M. M., AI Mesfer, M. K., Naseem, H. and Danish, M., 2015, "Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis," International Journal of Engineering and Advanced Technology, Vol. 4(3), pp.80-93.
  13. Kumar, S. S. and Himabindu, V., 2019, "Hydrogen Production by PEM Water Electrolysis - A Review," Materials Science for Energy Technologies, Vol. 2(3), pp.442-454. https://doi.org/10.1016/j.mset.2019.03.002
  14. Millet, P, Mbemba, N., Grigoriev, S.A., Fateev, V.N., Aukauloo, A. and Etievant, C., 2011, "Electrochemical Performances of PEM Water Electrolysis Cells and Perspectives," International Journal of Hydrogen Energy, Vol. 36(6), pp.4134-4142.. https://doi.org/10.1016/j.ijhydene.2010.06.105
  15. Kai, J., Saito, R., Terabaru, K., Li, H., Nakajima, H. and Ito, K., 2019, "Effect of Temperature on the Performance of Polymer Electrolyte Membrane Water Electrolysis: Numerical Analysis of Electrolysis Voltage Considering Gas/Liquid Two-Phase Flow," Journal of the Electrochemical Society, Vol. 166(4), pp.F246-F254. https://doi.org/10.1149/2.0521904jes
  16. Nagai, N., Takeuchi, M., Kimura, T. and Oka, T., 2003, "Existence of Optimum Space between Electrodes on Hydrogen Production by Water Electrolysis," International Journal of Hydrogen Energy, Vol. 28(1), pp.35-41. https://doi.org/10.1016/S0360-3199(02)00027-7
  17. Andrada, H. E., Franzoni, M. B., Carreras, A. C. and Chavez, F. V., 2018, "Dynamics and Spatial Distribution of Water in Nafion 117 Membrane Investigated by NMR Spin-Spin Relaxation," International Journal of Hydrogen Energy, Vol. 43(18), pp.8936-8943. https://doi.org/10.1016/j.ijhydene.2018.03.124
  18. Moseley, P. T. and Garche, J., 2015, "Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Ch. 8 Hydrogen Production from Renewable Energies," Elsevier, Amsterdam.
  19. Baldwin, R., Phan, M., Leonida, A., McClroy, J. and Nalette, T., 1990, "Hydrogen-Oxygen Proton-Exchange Membrane Fuel Cells and Electrolyzers," Journal of Power Sources, Vol. 290(3-4), pp.399-412.
  20. Lee, S.-H., Moon, I.-S., Kim, C.-H., Kang, K.-S., Park, C.-S. and Bae, K.-K., 2006, "A Study on the Efficiency of Hydrogen-Oxygen Mixture Gas Generation Stack," Trans. of the Korean Hydrogen and New Energy Society, Vol. 170(4), pp.409-417.