DOI QR코드

DOI QR Code

NH3-SCR용 나노분산 TiO2 담체상에 제조된 V2O5WO3/TiO2 촉매: TiO2 분산입도와 NOx 최대 분해온도와의 상관성

V2O5WO3/TiO2 Catalyst Prepared on Nanodispersed TiO2 for NH3-SCR: Relationship between D ispersed Particle Size of TiO2 and Maximum Decomposition Temperature of NOx

  • 서민채 (한국세라믹기술원 탄소중립소재센터) ;
  • 반세민 (한국세라믹기술원 탄소중립소재센터) ;
  • 허재구 (한국세라믹기술원 탄소중립소재센터) ;
  • 추용식 (한국세라믹기술원 탄소중립소재센터) ;
  • 문경석 (경상국립대학교 재료공학과) ;
  • 김대성 (한국세라믹기술원 탄소중립소재센터)
  • Min Chae, Seo (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Se-Min, Ban (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jae Gu, Heo (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Yong Sik, Chu (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kyung-Seok, Moon (Department of Materials Engineering, Gyeongsang National University) ;
  • Dae-Sung, Kim (Carbon Neutral Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2022.10.04
  • 심사 : 2022.11.14
  • 발행 : 2022.11.27

초록

For the selective catalytic reduction of NOx with ammonia (NH3-SCR), a V2O5WO3/TiO2 (VW/nTi) catalyst was prepared using V2O5 and WO3 on a nanodispersed TiO2 (nTi) support by simple impregnation process. The nTi support was dispersed for 0~3 hrs under controlled bead-milling in ethanol. The average particle size (D50) of nTi was reduced from 582 nm to 93 nm depending on the milling time. The NOx activity of these catalysts with maximum temperature shift was influenced by the dispersion of the TiO2. For the V0.5W2/nTi-0h catalyst, prepared with 582 nm nTi-0h before milling, the decomposition temperature with over 94 % NOx conversion had a narrow temperature window, within the range of 365-391 ℃. Similarly, the V0.5W2/nTi-2h catalyst, prepared with 107 nm nTi-2h bead-milled for 2hrs, showed a broad temperature window in the range of 358~450 ℃. However, the V0.5W2/Ti catalyst (D50 = 2.4 ㎛, aqueous, without milling) was observed at 325-385 ℃. Our results could pave the way for the production of effective NOx decomposition catalysts with a higher temperature range. This approach is also better at facilitating the dispersion on the support material. NH3-TPD, H2-TPR, FT-IR, and XPS were used to investigate the role of nTi in the DeNOx catalyst.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea (No. 20181110200170).

참고문헌

  1. K. B. Nam, Y. S. Kang and S. C. Hong, Appl. Chem. Eng., 26, 666 (2015).
  2. H. G. Im, M. J. Lee, W. G. Kim, S. J. Kim, B. R. Jeong, B. R. Ye, H. S. Lee and H. D. Kim, Nanomaterials, 12, 2329 (2022).
  3. J. J. Schreifels, S. Wang and J. Hao, Front. Energy, 6, 98 (2012).
  4. M. G. Jung and S. C. Hong, Clean Technol., 27, 315 (2021).
  5. X. Zhang, X. Zhang, X. Yang, Y. Chen, X. Hu and X. Wu, Chem. Eng. Sci., 238, 116588 (2021).
  6. S. B. Kim, G. R. Choi, J. H. Shin and S. C. Hong, Appl. Chem. Eng., 32, 35 (2021).
  7. S. M. Lee, S. S. Kim and S. C. Hong, Chem. Eng. Sci., 79, 177 (2012).
  8. B. R. Ye, M. J. Lee, S. Y. Chun, G. Y. Lee, J. W. Kim, B. R. Jeong, T. W. Kim and H. D. Kim, Appl. Surf. Sci., 560, 149934 (2021).
  9. M. Kobayashi and K. Miyoshi, Appl. Catal., B, 72, 253 (2007).
  10. M. A. Centeno, P. Malet, I. Carrizosa and J. A. Odriozola, J. Phys. Chem. B, 104, 3310 (2000).
  11. L. Chen, J. Li and M. Ge, J. Phys. Chem. C, 113, 21177 (2009).
  12. I. Giakoumelou, C. Fountzoula, C. Kordulis and S. Boghosian, J. Catal., 239, 1 (2006).
  13. J. G. Heo, M. Ullah, M. P. Chun, Y. S. Chu, S. G. Seo, M. C. Seo, Y. S. Choe and D.-S. Kim, Inorg. Chem. Commun., 137, 109191 (2022).
  14. D. W. Kwon, K. H. Park and S. C. Hong, Appl. Catal., A, 451, 227 (2013).
  15. S. G. Lee, S. S. Park, S. S. Hong, J. M. Park, S. H. Lee, D.-S. Kim and G. D. Lee, Appl. Chem. Eng., 22, 685 (2011).
  16. C. Wang, Z.-X. Deng, G. Zhang, S. Fan and Y. Li, Powder Technol., 125, 39 (2002).
  17. B. Abebe, H. C. A. Murthy and E. Amare, J. Encapsulation Adsorpt. Sci., 8, 225 (2018).
  18. H. H. Kim, H. Park and K. N. Kim, Korean J. Mater. Res., 20, 252 (2010).
  19. Y. Ren, Z. Ma and P. G. Bruce, J. Mater. Chem., 22, 15121 (2012).
  20. X. Cui, J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan and J. Shi, J. Catal., 270, 310 (2010).
  21. D. W. Kwon, S. M. Lee and S. C. Hong, Appl. Catal., A, 505, 557 (2015).
  22. I. H. Song, S. H. Youn, H. H. Lee, S. G. Lee, S. J. Cho and D. H. Kim, Appl. Catal., B, 210, 421 (2017).
  23. S. Liu, H. Wang, Y. Wei and R. Zhang, Mol. Catal., 485, 110822 (2020).
  24. Y. Yang, J. Liu, F. Liu, Z. Wang, J. Ding and H. Huang, Chem. Eng. J., 361, 578 (2018).
  25. L. C. Cordoba, M. F. Montemor and T. Coradin, Corros. Sci., 104, 152 (2016).
  26. Y. Liu, J. Xu, H. Li, S. Cai, H. Hu, C. Fang, L. Shi and D. Zhang, J. Mater. Chem. A., 3, 11543 (2015).
  27. Y. C. Wang, X. Liu, P. Ning, Q. L. Zhang, J. H. Zhang, L. S. Xu, X. S. Tang and M. Z. Wang, J. Fuel. Chem. Technol., 42, 1357 (2014).
  28. H. P. Ha and H.L. Choi, Korean J. Mater. Res., 16, 323 (2006).
  29. M. H. Kim, Korean Chem. Eng. Res., 51, 163 (2013).