DOI QR코드

DOI QR Code

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge

  • 허동훈 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 현동열 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박성철 (경북대학교 신소재공학부 금속신소재공학전공) ;
  • 박귀일 (경북대학교 신소재공학부 금속신소재공학전공)
  • Dong Hun, Heo (School of Materials Science and Engineering, Kyungpook National University) ;
  • Dong Yeol, Hyeon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Sung Cheol, Park (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kwi-Il, Park (School of Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2022.08.31
  • 심사 : 2022.11.17
  • 발행 : 2022.11.27

초록

Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A2001658 and No. 2022R1A2C1003853).

참고문헌

  1. K.-I. Park, J. H. Son, G.-T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang and K. J. Lee, Adv. Mater., 26, 2514 (2014). https://doi.org/10.1002/adma.201305659
  2. K.-I. Park, C. K. Jeong, J. Ryu, G.-T. Hwang and K. J. Lee, Adv. Mater., 3, 1539 (2013).
  3. J. Lv, J. Chen and P. S. Lee, SusMat, 1, 285 (2021). https://doi.org/10.1002/sus2.14
  4. S. C. Park, J. H. Lee, Y. G. Kim and K.-I. Park, J. Korean Inst. Electr. Electron. Mater. Eng. (in Korean), 35, 72 (2022).
  5. Y. G. Kim, K. T. Kim, S. C. Park, D. H. Heo, D. Y. Hyeon, S. P. R. Mallem and K.-I. Park, Nano Energy, 98, 107238 (2022). https://doi.org/10.1016/j.nanoen.2022.107238
  6. C. Baek, J. E. Wang, S. Ryu, J. H. Kim, C. K. Jeong, K.-I. Park and D. K. Kim, RSC Adv., 7, 2851 (2017). https://doi.org/10.1039/C6RA26285F
  7. T. Karaki, K. Yan, T. Miyamoto and M. Adachi, Jpn. J. Appl. Phys., 46, 97 (2007).
  8. C. Baek, J. E. Wang, S. Moon, C. H. Choi and D. K. Kim, J. Am. Ceram. Soc., 99, 3802 (2016). https://doi.org/10.1111/jace.14397
  9. K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee, Adv. Mater., 24, 2999 (2012). https://doi.org/10.1002/adma.201200105
  10. S. D. Kim, G.-T. Hwang, K. Song, C. K. Jeong, K.-I. Park, J. Jang, K. H. Kim, J. Ryu and S. Y. Choi, Nano Energy, 58, 78 (2019). https://doi.org/10.1016/j.nanoen.2018.12.096
  11. C. K. Jeong, C. Baek, A. I. Kingon, K.-I. Park and S. H. Kim, Small, 14, 1704022 (2018). https://doi.org/10.1002/smll.201704022
  12. K.-I. Park, S. B. Bae, S. H. Yang, H. I. Lee, K. Lee and S. J. Lee, Nanoscale, 6, 8962 (2014). https://doi.org/10.1039/c4nr02246g
  13. Z. Yang, J. Wang, Y. Hu, C. Deng, K. Zhu and J. Qiu, Compos. Appl. Sci. Manuf., 128, 105675 (2020). https://doi.org/10.1016/j.compositesa.2019.105675
  14. C. K. Jeong, J. H. Lee, D. Y. Hyeon, Y. G. Kim, S. Kim, C. Baek, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park, Appl. Surf. Sci., 512, 144784 (2020). https://doi.org/10.1016/j.apsusc.2019.144784
  15. Z. H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang and Z. L. Wang, J. Phys. Chem. Lett., 3, 3599 (2012). https://doi.org/10.1021/jz301805f
  16. H. Jiao, K. Zhao, L. Ma, Y. Tang, X. Liu and T. Bian, J. Alloys Compd., 693, 221 (2017). https://doi.org/10.1016/j.jallcom.2016.09.175
  17. Y. Zhang, C. K. Jeong, T. Yang, H. Sun, L. Q. Chen, S. Zhang, W. Chen and Q. Wang, J. Mater. Chem. A, 6, 14546 (2018). https://doi.org/10.1039/c8ta03617a
  18. Y. Zhang, C. K. Jeong, J. Wang, H. Sun, F. Li, G. Zhang, L. Q. Chen, S. Zhang, W. Chen and Q. Wang, Nano Energy, 50, 35 (2018). https://doi.org/10.1016/j.nanoen.2018.05.025
  19. L. Song, Z. Huang, S. Guo, Y. Li and Q. Wang, ACS Appl. Mater. Interfaces, 13, 37252 (2021). https://doi.org/10.1021/acsami.1c11158
  20. Z. Zhang, C. Yao, Y. Yu, Z. Hong, M. Zhi and X. Wang, Adv. Funct. Mater., 26, 6760 (2016). https://doi.org/10.1002/adfm.201602624
  21. H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen and Z. Guo, J. Mater. Chem. C, 5, 73 (2017). https://doi.org/10.1039/C6TC03713E
  22. I. Pasuk, F. Neatu, S. Neatu, M. Florea, C. M. Istrate, I. Pintilie and L. Pintilie, Nanomaterials, 11, 1121 (2021). https://doi.org/10.3390/nano11051121
  23. C. K. Jeong, C. Baek, A. I. Kingon, K.-I. Park and S. H. Kim, Small, 14, 1704022 (2018). https://doi.org/10.1002/smll.201704022
  24. C. K. Jeong, K.-I. Park, J. Ryu, G.-T. Hwang and K. J. Lee, Adv. Funct. Mater., 24, 2620 (2014). https://doi.org/10.1002/adfm.201303484