Acknowledgement
This work is financially supported by the National Research Foundation of Korea [NRF] Grant funded by the Korea government (MSIP) (No. MRC, 2017R1A5A2015541).
References
- Antipova, V., Hawlitschka, A., Mix, E., Schmitt, O., Drager, D., Benecke, R. and Wree, A. (2013) Behavioral and structural effects of unilateral intrastriatal injections of botulinum neurotoxin a in the rat model of Parkinson's disease. J. Neurosci. Res. 91, 838-847. https://doi.org/10.1002/jnr.23210
- Boll, M. C., Alcaraz-Zubeldia, M. and Rios, C. (2011) Medical management of Parkinson's disease: focus on neuroprotection. Curr. Neuropharmacol. 9, 350-359. https://doi.org/10.2174/157015911795596577
- Bonte, M.-A., El Idrissi, F., Gressier, B., Devos, D. and Belarbi, K. (2021) Protein network exploration prioritizes targets for modulating neuroinflammation in Parkinson's disease. Int. Immunopharmacol. 95, 107526. https://doi.org/10.1016/j.intimp.2021.107526
- Butler, C. A., Popescu, A., Kitchener, E., Allendorf, D. H., Puigdellivol, M. and Brown, G. C. (2021) Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. doi: 10.1111/jnc.15327 [Online ahead of print].
- Chaudhuri, K. R., Healy, D. G. and Schapira, A. H. (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235-245. https://doi.org/10.1016/S1474-4422(06)70373-8
- Choi, D. Y., Lee, M. K. and Hong, J. T. (2013) Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration. Neurobiol. Dis. 49, 159-168. https://doi.org/10.1016/j.nbd.2012.08.001
- Coffield, J. A. and Yan, X. (2009) Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons. J. Pharmacol. Exp. Ther. 330, 352-358. https://doi.org/10.1124/jpet.108.147744
- Connolly, B. S. and Lang, A. E. (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311, 1670-1683. https://doi.org/10.1001/jama.2014.3654
- Day, M., Wang, Z., Ding, J., An, X., Ingham, C. A., Shering, A. F., Wokosin, D., Ilijic, E., Sun, Z. and Sampson, A. R. (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251-259. https://doi.org/10.1038/nn1632
- Ding, J., Guzman, J. N., Tkatch, T., Chen, S., Goldberg, J. A., Ebert, P. J., Levitt, P., Wilson, C. J., Hamm, H. E. and Surmeier, D. J. (2006) RGS4-dependent attenuation of M 4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat. Neurosci. 9, 832-842. https://doi.org/10.1038/nn1700
- Hawlitschka, A., Antipova, V., Schmitt, O., Witt, M., Benecke, R., Mix, E. and Wree, A. (2013) Intracerebrally applied botulinum neurotoxin in experimental neuroscience. Curr. Pharm. Biotechnol. 14, 124-130. https://doi.org/10.2174/138920113804805331
- Hwang, C. J., Kim, Y. E., Son, D. J., Park, M. H., Choi, D. Y., Park, P. H., Hellstrom, M., Han, S. B., Oh, K. W., Park, E. K. and Hong, J. T. (2017) Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox. Biol. 11, 456-468. https://doi.org/10.1016/j.redox.2016.12.008
- Jankovic, J. (2004) Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 75, 951-957. https://doi.org/10.1136/jnnp.2003.034702
- Knuepfer, S. and Juenemann, K. P. (2014) Experience with botulinum toxin type A in the treatment of neurogenic detrusor overactivity in clinical practice. Ther. Adv. Urol. 6, 34-42. https://doi.org/10.1177/1756287213510962
- Liu, M. and Bing, G. (2011) Lipopolysaccharide animal models for Parkinson's disease. Parkinsons Dis. 2011, 327089.
- Marsden, C. (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32, 514-539. https://doi.org/10.1212/WNL.32.5.514
- Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M. and Nagatsu, T. (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett. 180, 147-150. https://doi.org/10.1016/0304-3940(94)90508-8
- Munoz-Lora, V. R. M., Abdalla, H. B., Cury, A. A. D. B. and Clemente-Napimoga, J. T. (2020) Modulatory effect of botulinum toxin type A on the microglial P2X7/CatS/FKN activated-pathway in antigeninduced arthritis of the temporomandibular joint of rats. Toxicon 187, 116-121. https://doi.org/10.1016/j.toxicon.2020.08.027
- Oldenburg, I. A. and Ding, J. B. (2011) Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr. Opin. Neurobiol. 21, 425-432. https://doi.org/10.1016/j.conb.2011.04.004
- Paxinos, G. and Watson, C. (2006) The Rat Brain in Stereotaxic Coordinates. Hard cover ed. Elsevier.
- Piotrowska, A., Popiolek-Barczyk, K., Pavone, F. and Mika, J. (2017) Comparison of the expression changes after botulinum toxin type A and minocycline administration in lipopolysaccharide-stimulated rat microglial and astroglial cultures. Front. Cell. Infect. Microbiol. 7, 141. https://doi.org/10.3389/fcimb.2017.00141
- Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I. and Pitossi, F. J. (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson's disease. Brain 131, 1880-1894. https://doi.org/10.1093/brain/awn101
- Pringsheim, T., Jette, N., Frolkis, A. and Steeves, T. D. (2014) The prevalence of Parkinson's disease: a systematic review and metaanalysis. Mov. Disord. 29, 1583-1590. https://doi.org/10.1002/mds.25945
- Rojewska, E., Piotrowska, A., Popiolek-Barczyk, K. and Mika, J. (2018) Botulinum toxin type A-a modulator of spinal neuron-glia interactions under neuropathic pain conditions. Toxins 10, 145. https://doi.org/10.3390/toxins10040145
- Rossetto, O., Megighian, A., Scorzeto, M. and Montecucco, C. (2013) Botulinum neurotoxins. Toxicon 67, 31-36. https://doi.org/10.1016/j.toxicon.2013.01.017
- Sahinkanat, T., Ozkan, K. U., Ciralik, H., Ozturk, S. and Resim, S. (2009) Botulinum toxin-A to improve urethral wound healing: an experimental study in a rat model. Urology 73, 405-409. https://doi.org/10.1016/j.urology.2008.07.051
- Stubblefield, M. D., Levine, A., Custodio, C. M. and Fitzpatrick, T. (2008) The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch. Phys. Med. Rehabil. 89, 417-421. https://doi.org/10.1016/j.apmr.2007.11.022
- Wang, L., Wang, K., Chu, X., Li, T., Shen, N., Fan, C., Niu, Z., Zhang, X. and Hu, L. (2017) Intra-articular injection of Botulinum toxin A reduces neurogenic inflammation in CFA-induced arthritic rat model. Toxicon 126, 70-78. https://doi.org/10.1016/j.toxicon.2016.11.009
- Wree, A., Mix, E., Hawlitschka, A., Antipova, V., Witt, M., Schmitt, O. and Benecke, R. (2011) Intrastriatal botulinum toxin abolishes pathologic rotational behaviour and induces axonal varicosities in the 6-OHDA rat model of Parkinson's disease. Neurobiol. Dis. 41, 291-298. https://doi.org/10.1016/j.nbd.2010.09.017
- Zhang, L. Y., Jin, Q. Q., Holscher, C. and Li, L. (2021a) Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen. Res. 16, 1660-1670. https://doi.org/10.4103/1673-5374.303045
- Zhang, Z., Hao, L., Shi, M., Yu, Z., Shao, S., Yuan, Y., Zhang, Z. and Holscher, C. (2021b) Neuroprotective effects of a GLP-2 analogue in the MPTP Parkinson's disease mouse model. J. Parkinsons Dis. 11, 529-543. https://doi.org/10.3233/JPD-202318
- Zhao, Y. F., Tang, Y. and Illes, P. (2021) Astrocytic and oligodendrocytic P2X7 receptors determine neuronal functions in the CNS. Front. Mol. Neurosci. 14, 641570. https://doi.org/10.3389/fnmol.2021.641570