DOI QR코드

DOI QR Code

Discovery of Cellular RhoA Functions by the Integrated Application of Gene Set Enrichment Analysis

  • Chun, Kwang-Hoon (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University)
  • Received : 2021.04.19
  • Accepted : 2021.07.09
  • Published : 2022.01.01

Abstract

The small GTPase RhoA has been studied extensively for its role in actin dynamics. In this study, multiple bioinformatics tools were applied cooperatively to the microarray dataset GSE64714 to explore previously unidentified functions of RhoA. Comparative gene expression analysis revealed 545 differentially expressed genes in RhoA-null cells versus controls. Gene set enrichment analysis (GSEA) was conducted with three gene set collections: (1) the hallmark, (2) the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and (3) the Gene Ontology Biological Process. GSEA results showed that RhoA is related strongly to diverse pathways: cell cycle/growth, DNA repair, metabolism, keratinization, response to fungus, and vesicular transport. These functions were verified by heatmap analysis, KEGG pathway diagramming, and direct acyclic graphing. The use of multiple gene set collections restricted the leakage of information extracted. However, gene sets from individual collections are heterogenous in gene element composition, number, and the contextual meaning embraced in names. Indeed, there was a limit to deriving functions with high accuracy and reliability simply from gene set names. The comparison of multiple gene set collections showed that although the gene sets had similar names, the gene elements were extremely heterogeneous. Thus, the type of collection chosen and the analytical context influence the interpretation of GSEA results. Nonetheless, the analyses of multiple collections made it possible to derive robust and consistent function identifications. This study confirmed several well-described roles of RhoA and revealed less explored functions, suggesting future research directions.

Keywords

Acknowledgement

This study was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1B01012515), Republic of Korea.

References

  1. Adnane, J., Muro-Cacho, C., Mathews, L., Sebti, S. M. and Munoz-Antonia, T. (2002) Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin. Cancer Res. 8, 2225-2232.
  2. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29. https://doi.org/10.1038/75556
  3. Carlson, M. (2016) mouse4302.db: Affymetrix Mouse Genome 430 2.0 Array annotation data (chip mouse4302). R package version 3.2.3.
  4. Chen, Z., Sun, J., Pradines, A., Favre, G., Adnane, J. and Sebti, S. M. (2000) Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974-17978. https://doi.org/10.1074/jbc.C000145200
  5. Cheng, C., Seen, D., Zheng, C., Zeng, R. and Li, E. (2021) Role of small GTPase RhoA in DNA damage response. Biomolecules 11, 212. https://doi.org/10.3390/biom11020212
  6. Clark, E. A., Golub, T. R., Lander, E. S. and Hynes, R. O. (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535. https://doi.org/10.1038/35020106
  7. Du, W. and Prendergast, G. C. (1999) Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res. 59, 5492-5496.
  8. Duong, K. H. M. and Chun, K. H. (2019) Regulation of glucose transport by RhoA in 3T3-L1 adipocytes and L6 myoblasts. Biochem. Biophys. Res. Commun. 519, 880-886. https://doi.org/10.1016/j.bbrc.2019.09.083
  9. Faried, A., Faried, L. S., Kimura, H., Nakajima, M., Sohda, M., Miyazaki, T., Kato, H., Usman, N. and Kuwano, H. (2006) RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur. J. Cancer 42, 1455-1465. https://doi.org/10.1016/j.ejca.2006.02.012
  10. Garcia-Mariscal, A., Peyrollier, K., Basse, A., Pedersen, E., Ruhl, R., van Hengel, J. and Brakebusch, C. (2018) RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases 9, 433-444. https://doi.org/10.1080/21541248.2016.1248272
  11. Gautier, L., Cope, L., Bolstad, B. M. and Irizarry, R. A. (2004) Affy- -analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315. https://doi.org/10.1093/bioinformatics/btg405
  12. Gentleman, R., Carey, V., Huber, W. and Hahne, F. (2018) genefilter: methods for filtering genes from high-throughput experiments. R package version 1.64.0.
  13. Haga, R. B. and Ridley, A. J. (2016) Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7, 207-221. https://doi.org/10.1080/21541248.2016.1232583
  14. Hodge, R. G. and Ridley, A. J. (2016) Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496-510. https://doi.org/10.1038/nrm.2016.67
  15. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264. https://doi.org/10.1093/biostatistics/4.2.249
  16. Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., Yamamoto, S., Tatsuno, K., Katoh, H., Watanabe, Y., Ichimura, T., Ushiku, T., Funahashi, S., Tateishi, K., Wada, I., Shimizu, N., Nomura, S., Koike, K., Seto, Y., Fukayama, M., Aburatani, H. and Ishikawa, S. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583-587. https://doi.org/10.1038/ng.2984
  17. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361. https://doi.org/10.1093/nar/gkw1092
  18. Kim, J. G., Islam, R., Cho, J. Y., Jeong, H., Cap, K. C., Park, Y., Hossain, A. J. and Park, J. B. (2018) Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol. 233, 6381-6392. https://doi.org/10.1002/jcp.26487
  19. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245-248. https://doi.org/10.1126/science.273.5272.245
  20. Kolde, R. (2019) pheatmap: Pretty Heatmaps. Available from: https://CRAN.R-project.org/package=pheatmap/.
  21. Leung, T., Manser, E., Tan, L. and Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051-29054. https://doi.org/10.1074/jbc.270.49.29051
  22. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P. and Tamayo, P. (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417-425. https://doi.org/10.1016/j.cels.2015.12.004
  23. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P. and Mesirov, J. P. (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740. https://doi.org/10.1093/bioinformatics/btr260
  24. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898. https://doi.org/10.1126/science.285.5429.895
  25. Mazieres, J., Antonia, T., Daste, G., Muro-Cacho, C., Berchery, D., Tillement, V., Pradines, A., Sebti, S. and Favre, G. (2004) Loss of RhoB expression in human lung cancer progression. Clin. Cancer Res. 10, 2742-2750. https://doi.org/10.1158/1078-0432.ccr-03-0149
  26. Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately down-regulated in human diabetes. Nat. Genet. 34, 267-273. https://doi.org/10.1038/ng1180
  27. Narumiya, S. and Thumkeo, D. (2018) Rho signaling research: history, current status and future directions. FEBS Lett. 592, 1763-1776. https://doi.org/10.1002/1873-3468.13087
  28. Porter, A. P., Papaioannou, A. and Malliri, A. (2016) Deregulation of Rho GTPases in cancer. Small GTPases 7, 123-138. https://doi.org/10.1080/21541248.2016.1173767
  29. R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/.
  30. Ridley, A. J. (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522-529. https://doi.org/10.1016/j.tcb.2006.08.006
  31. Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399. https://doi.org/10.1016/0092-8674(92)90163-7
  32. Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., Muto, H., Tsuyama, N., Sato-Otsubo, A., Okuno, Y., Sakata, S., Kamada, Y., Nakamoto-Matsubara, R., Tran, N. B., Izutsu, K., Sato, Y., Ohta, Y., Furuta, J., Shimizu, S., Komeno, T., Sato, Y., Ito, T., Noguchi, M., Noguchi, E., Sanada, M., Chiba, K., Tanaka, H., Suzukawa, K., Nanmoku, T., Hasegawa, Y., Nureki, O., Miyano, S., Nakamura, N., Takeuchi, K., Ogawa, S. and Chiba, S. (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171-175. https://doi.org/10.1038/ng.2872
  33. Sato, N., Fukui, T., Taniguchi, T., Yokoyama, T., Kondo, M., Nagasaka, T., Goto, Y., Gao, W., Ueda, Y., Yokoi, K., Minna, J. D., Osada, H., Kondo, Y. and Sekido, Y. (2007) RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line. Int. J. Cancer 120, 543-551. https://doi.org/10.1002/ijc.22328
  34. Satoh, K., Fukumoto, Y. and Shimokawa, H. (2011) Rho-kinase: important new therapeutic target in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 301, H287-H296. https://doi.org/10.1152/ajpheart.00327.2011
  35. Sergushichev, A. A. (2016) An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv doi: 10.1101/060012.
  36. Sherr, C. J. and McCormick, F. (2002) The RB and p53 pathways in cancer. Cancer Cell 2, 103-112. https://doi.org/10.1016/S1535-6108(02)00102-2
  37. Shimokawa, H., Sunamura, S. and Satoh, K. (2016) RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352-366. https://doi.org/10.1161/CIRCRESAHA.115.306532
  38. Shoop, E., Casaes, P., Onsongo, G., Lesnett, L., Petursdottir, E. O., Donkor, E. K., Tkach, D. and Cosimini, M. (2004) Data exploration tools for the Gene Ontology database. Bioinformatics 20, 3442-3454. https://doi.org/10.1093/bioinformatics/bth425
  39. Simpson, K. J., Dugan, A. S. and Mercurio, A. M. (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 64, 8694-8701. https://doi.org/10.1158/0008-5472.CAN-04-2247
  40. Smyth, G. K., Michaud, J. and Scott, H. S. (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067-2075. https://doi.org/10.1093/bioinformatics/bti270
  41. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
  42. Suwa, H., Ohshio, G., Imamura, T., Watanabe, G., Arii, S., Imamura, M., Narumiya, S., Hiai, H. and Fukumoto, M. (1998) Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 77, 147-152. https://doi.org/10.1038/bjc.1998.23
  43. Taiyun, W. and Viliam, S. (2017) R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplot/.
  44. Wang, D., Dou, K., Xiang, H., Song, Z., Zhao, Q., Chen, Y. and Li, Y. (2007) Involvement of RhoA in progression of human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 22, 1916-1920. https://doi.org/10.1111/j.1440-1746.2006.04534.x
  45. Wang, J., Wu, Q., Zhang, L. H., Zhao, Y. X. and Wu, X. (2016) The role of RhoA in vulvar squamous cell carcinoma: a carcinogenesis, progression, and target therapy marker. Tumour Biol. 37, 2879-2890. https://doi.org/10.1007/s13277-015-4087-6
  46. Wang, K., Yuen, S. T., Xu, J., Lee, S. P., Yan, H. H., Shi, S. T., Siu, H. C., Deng, S., Chu, K. M., Law, S., Chan, K. H., Chan, A. S., Tsui, W. Y., Ho, S. L., Chan, A. K., Man, J. L., Foglizzo, V., Ng, M. K., Chan, A. S., Ching, Y. P., Cheng, G. H., Xie, T., Fernandez, J., Li, V. S., Clevers, H., Rejto, P. A., Mao, M. and Leung, S. Y. (2014) Wholegenome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573-582. https://doi.org/10.1038/ng.2983
  47. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. and Narumiya, S. (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136-143. https://doi.org/10.1038/11056
  48. Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
  49. Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., Kim, S. C., Lee, B., Rho, K., Lee, J. E., Cho, K. H., Kim, W., Ju, H., Kim, J., Kim, S. J., Kim, W. S., Lee, S. and Ko, Y. H. (2014) A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 371-375. https://doi.org/10.1038/ng.2916
  50. Zhao, R., Liu, K., Huang, Z., Wang, J., Pan, Y., Huang, Y., Deng, X., Liu, J., Qin, C., Cheng, G., Hua, L., Li, J. and Yin, C. (2015) Genetic variants in Caveolin-1 and RhoA/ROCK1 are associated with clear cell renal cell carcinoma risk in a chinese population. PLoS ONE 10, e0128771. https://doi.org/10.1371/journal.pone.0128771
  51. Zhou, J., Hayakawa, Y., Wang, T. C. and Bass, A. J. (2014) RhoA mutations identified in diffuse gastric cancer. Cancer Cell 26, 9-11. https://doi.org/10.1016/j.ccr.2014.06.022
  52. Zhu, J., Zhao, Q., Katsevich, E. and Sabatti, C. (2019) Exploratory gene ontology analysis with interactive visualization. Sci. Rep. 9, 7793. https://doi.org/10.1038/s41598-019-42178-x