Acknowledgement
This study was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1B01012515), Republic of Korea.
References
- Adnane, J., Muro-Cacho, C., Mathews, L., Sebti, S. M. and Munoz-Antonia, T. (2002) Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin. Cancer Res. 8, 2225-2232.
- Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25-29. https://doi.org/10.1038/75556
- Carlson, M. (2016) mouse4302.db: Affymetrix Mouse Genome 430 2.0 Array annotation data (chip mouse4302). R package version 3.2.3.
- Chen, Z., Sun, J., Pradines, A., Favre, G., Adnane, J. and Sebti, S. M. (2000) Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice. J. Biol. Chem. 275, 17974-17978. https://doi.org/10.1074/jbc.C000145200
- Cheng, C., Seen, D., Zheng, C., Zeng, R. and Li, E. (2021) Role of small GTPase RhoA in DNA damage response. Biomolecules 11, 212. https://doi.org/10.3390/biom11020212
- Clark, E. A., Golub, T. R., Lander, E. S. and Hynes, R. O. (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535. https://doi.org/10.1038/35020106
- Du, W. and Prendergast, G. C. (1999) Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res. 59, 5492-5496.
- Duong, K. H. M. and Chun, K. H. (2019) Regulation of glucose transport by RhoA in 3T3-L1 adipocytes and L6 myoblasts. Biochem. Biophys. Res. Commun. 519, 880-886. https://doi.org/10.1016/j.bbrc.2019.09.083
- Faried, A., Faried, L. S., Kimura, H., Nakajima, M., Sohda, M., Miyazaki, T., Kato, H., Usman, N. and Kuwano, H. (2006) RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur. J. Cancer 42, 1455-1465. https://doi.org/10.1016/j.ejca.2006.02.012
- Garcia-Mariscal, A., Peyrollier, K., Basse, A., Pedersen, E., Ruhl, R., van Hengel, J. and Brakebusch, C. (2018) RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases 9, 433-444. https://doi.org/10.1080/21541248.2016.1248272
- Gautier, L., Cope, L., Bolstad, B. M. and Irizarry, R. A. (2004) Affy- -analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307-315. https://doi.org/10.1093/bioinformatics/btg405
- Gentleman, R., Carey, V., Huber, W. and Hahne, F. (2018) genefilter: methods for filtering genes from high-throughput experiments. R package version 1.64.0.
- Haga, R. B. and Ridley, A. J. (2016) Rho GTPases: regulation and roles in cancer cell biology. Small GTPases 7, 207-221. https://doi.org/10.1080/21541248.2016.1232583
- Hodge, R. G. and Ridley, A. J. (2016) Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496-510. https://doi.org/10.1038/nrm.2016.67
- Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264. https://doi.org/10.1093/biostatistics/4.2.249
- Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., Yamamoto, S., Tatsuno, K., Katoh, H., Watanabe, Y., Ichimura, T., Ushiku, T., Funahashi, S., Tateishi, K., Wada, I., Shimizu, N., Nomura, S., Koike, K., Seto, Y., Fukayama, M., Aburatani, H. and Ishikawa, S. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583-587. https://doi.org/10.1038/ng.2984
- Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361. https://doi.org/10.1093/nar/gkw1092
- Kim, J. G., Islam, R., Cho, J. Y., Jeong, H., Cap, K. C., Park, Y., Hossain, A. J. and Park, J. B. (2018) Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol. 233, 6381-6392. https://doi.org/10.1002/jcp.26487
- Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245-248. https://doi.org/10.1126/science.273.5272.245
- Kolde, R. (2019) pheatmap: Pretty Heatmaps. Available from: https://CRAN.R-project.org/package=pheatmap/.
- Leung, T., Manser, E., Tan, L. and Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051-29054. https://doi.org/10.1074/jbc.270.49.29051
- Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P. and Tamayo, P. (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417-425. https://doi.org/10.1016/j.cels.2015.12.004
- Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P. and Mesirov, J. P. (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740. https://doi.org/10.1093/bioinformatics/btr260
- Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898. https://doi.org/10.1126/science.285.5429.895
- Mazieres, J., Antonia, T., Daste, G., Muro-Cacho, C., Berchery, D., Tillement, V., Pradines, A., Sebti, S. and Favre, G. (2004) Loss of RhoB expression in human lung cancer progression. Clin. Cancer Res. 10, 2742-2750. https://doi.org/10.1158/1078-0432.ccr-03-0149
- Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., Altshuler, D. and Groop, L. C. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately down-regulated in human diabetes. Nat. Genet. 34, 267-273. https://doi.org/10.1038/ng1180
- Narumiya, S. and Thumkeo, D. (2018) Rho signaling research: history, current status and future directions. FEBS Lett. 592, 1763-1776. https://doi.org/10.1002/1873-3468.13087
- Porter, A. P., Papaioannou, A. and Malliri, A. (2016) Deregulation of Rho GTPases in cancer. Small GTPases 7, 123-138. https://doi.org/10.1080/21541248.2016.1173767
- R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/.
- Ridley, A. J. (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522-529. https://doi.org/10.1016/j.tcb.2006.08.006
- Ridley, A. J. and Hall, A. (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399. https://doi.org/10.1016/0092-8674(92)90163-7
- Sakata-Yanagimoto, M., Enami, T., Yoshida, K., Shiraishi, Y., Ishii, R., Miyake, Y., Muto, H., Tsuyama, N., Sato-Otsubo, A., Okuno, Y., Sakata, S., Kamada, Y., Nakamoto-Matsubara, R., Tran, N. B., Izutsu, K., Sato, Y., Ohta, Y., Furuta, J., Shimizu, S., Komeno, T., Sato, Y., Ito, T., Noguchi, M., Noguchi, E., Sanada, M., Chiba, K., Tanaka, H., Suzukawa, K., Nanmoku, T., Hasegawa, Y., Nureki, O., Miyano, S., Nakamura, N., Takeuchi, K., Ogawa, S. and Chiba, S. (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171-175. https://doi.org/10.1038/ng.2872
- Sato, N., Fukui, T., Taniguchi, T., Yokoyama, T., Kondo, M., Nagasaka, T., Goto, Y., Gao, W., Ueda, Y., Yokoi, K., Minna, J. D., Osada, H., Kondo, Y. and Sekido, Y. (2007) RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line. Int. J. Cancer 120, 543-551. https://doi.org/10.1002/ijc.22328
- Satoh, K., Fukumoto, Y. and Shimokawa, H. (2011) Rho-kinase: important new therapeutic target in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol. 301, H287-H296. https://doi.org/10.1152/ajpheart.00327.2011
- Sergushichev, A. A. (2016) An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv doi: 10.1101/060012.
- Sherr, C. J. and McCormick, F. (2002) The RB and p53 pathways in cancer. Cancer Cell 2, 103-112. https://doi.org/10.1016/S1535-6108(02)00102-2
- Shimokawa, H., Sunamura, S. and Satoh, K. (2016) RhoA/Rho-kinase in the cardiovascular system. Circ. Res. 118, 352-366. https://doi.org/10.1161/CIRCRESAHA.115.306532
- Shoop, E., Casaes, P., Onsongo, G., Lesnett, L., Petursdottir, E. O., Donkor, E. K., Tkach, D. and Cosimini, M. (2004) Data exploration tools for the Gene Ontology database. Bioinformatics 20, 3442-3454. https://doi.org/10.1093/bioinformatics/bth425
- Simpson, K. J., Dugan, A. S. and Mercurio, A. M. (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 64, 8694-8701. https://doi.org/10.1158/0008-5472.CAN-04-2247
- Smyth, G. K., Michaud, J. and Scott, H. S. (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067-2075. https://doi.org/10.1093/bioinformatics/bti270
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
- Suwa, H., Ohshio, G., Imamura, T., Watanabe, G., Arii, S., Imamura, M., Narumiya, S., Hiai, H. and Fukumoto, M. (1998) Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 77, 147-152. https://doi.org/10.1038/bjc.1998.23
- Taiyun, W. and Viliam, S. (2017) R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplot/.
- Wang, D., Dou, K., Xiang, H., Song, Z., Zhao, Q., Chen, Y. and Li, Y. (2007) Involvement of RhoA in progression of human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 22, 1916-1920. https://doi.org/10.1111/j.1440-1746.2006.04534.x
- Wang, J., Wu, Q., Zhang, L. H., Zhao, Y. X. and Wu, X. (2016) The role of RhoA in vulvar squamous cell carcinoma: a carcinogenesis, progression, and target therapy marker. Tumour Biol. 37, 2879-2890. https://doi.org/10.1007/s13277-015-4087-6
- Wang, K., Yuen, S. T., Xu, J., Lee, S. P., Yan, H. H., Shi, S. T., Siu, H. C., Deng, S., Chu, K. M., Law, S., Chan, K. H., Chan, A. S., Tsui, W. Y., Ho, S. L., Chan, A. K., Man, J. L., Foglizzo, V., Ng, M. K., Chan, A. S., Ching, Y. P., Cheng, G. H., Xie, T., Fernandez, J., Li, V. S., Clevers, H., Rejto, P. A., Mao, M. and Leung, S. Y. (2014) Wholegenome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573-582. https://doi.org/10.1038/ng.2983
- Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. and Narumiya, S. (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136-143. https://doi.org/10.1038/11056
- Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
- Yoo, H. Y., Sung, M. K., Lee, S. H., Kim, S., Lee, H., Park, S., Kim, S. C., Lee, B., Rho, K., Lee, J. E., Cho, K. H., Kim, W., Ju, H., Kim, J., Kim, S. J., Kim, W. S., Lee, S. and Ko, Y. H. (2014) A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 371-375. https://doi.org/10.1038/ng.2916
- Zhao, R., Liu, K., Huang, Z., Wang, J., Pan, Y., Huang, Y., Deng, X., Liu, J., Qin, C., Cheng, G., Hua, L., Li, J. and Yin, C. (2015) Genetic variants in Caveolin-1 and RhoA/ROCK1 are associated with clear cell renal cell carcinoma risk in a chinese population. PLoS ONE 10, e0128771. https://doi.org/10.1371/journal.pone.0128771
- Zhou, J., Hayakawa, Y., Wang, T. C. and Bass, A. J. (2014) RhoA mutations identified in diffuse gastric cancer. Cancer Cell 26, 9-11. https://doi.org/10.1016/j.ccr.2014.06.022
- Zhu, J., Zhao, Q., Katsevich, E. and Sabatti, C. (2019) Exploratory gene ontology analysis with interactive visualization. Sci. Rep. 9, 7793. https://doi.org/10.1038/s41598-019-42178-x