DOI QR코드

DOI QR Code

Enhancement of Radiosensitivity by DNA Hypomethylating Drugs through Apoptosis and Autophagy in Human Sarcoma Cells

  • Park, Moon-Taek (Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS)) ;
  • Kim, Sung-Dae (Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS)) ;
  • Han, Yu Kyeong (Department of Microbiology and Immunology, College of Medicine, Inje University) ;
  • Hyun, Jin Won (Jeju National University School of Medicine and Jeju Research Center for Natural Medicine) ;
  • Lee, Hae-June (Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences) ;
  • Yi, Joo Mi (Department of Microbiology and Immunology, College of Medicine, Inje University)
  • Received : 2021.11.12
  • Accepted : 2021.11.18
  • Published : 2022.01.01

Abstract

The targeting of DNA methylation in cancer using DNA hypomethylating drugs has been well known to sensitize cancer cells to chemotherapy and immunotherapy by affecting multiple pathways. Herein, we investigated the combinational effects of DNA hypomethylating drugs and ionizing radiation (IR) in human sarcoma cell lines both in vitro and in vivo. Clonogenic assays were performed to determine the radiosensitizing properties of two DNA hypomethylating drugs on sarcoma cell lines we tested in this study with multiple doses of IR. We analyzed the effects of 5-aza-dC or SGI-110, as DNA hypomethylating drugs, in combination with IR in vitro on the proliferation, apoptosis, caspase-3/7 activity, migration/invasion, and Western blotting using apoptosis- or autophagy-related factors. To confirm the combined effect of DNA hypomethylating drugs and IR in our in vitro experiment, we generated the sarcoma cells in nude mouse xenograft models. Here, we found that the combination of DNA hypomethylating drugs and IR improved anticancer effects by inhibiting cell proliferation and by promoting synergistic cell death that is associated with both apoptosis and autophagy in vitro and in vivo. Our data demonstrated that the combination effects of DNA hypomethylating drugs with radiation exhibited greater cellular effects than the use of a single agent treatment, thus suggesting that the combination of DNA hypomethylating drugs and radiation may become a new radiotherapy to improve therapeutic efficacy for cancer treatment.

Keywords

Acknowledgement

This work was supported by grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2020M2C8A2069356).

References

  1. Bender, C. M., Pao, M. M. and Jones, P. A. (1998) Inhibition of DNA methylation by 5-aza-2'-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58, 95-101.
  2. Brennan, M. F., Antonescu, C. R., Moraco, N. and Singer, S. (2014) Lessons learned from the study of 10,000 patients with soft tissue sarcoma. Ann. Surg. 260, 416-422. https://doi.org/10.1097/sla.0000000000000869
  3. Dalby, K., Tekedereli, I., Lopez-Berestein, G. and Ozpolat, B. (2010) Targeting the pro-death and pro-survival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6, 322-329. https://doi.org/10.4161/auto.6.3.11625
  4. De Schutter, H., Kimpe, M., Isebaert, S. and Nuyts, S. (2009) A systematic assessment of radiation dose enhancement by 5-Aza-2'- deoxycytidine and histone deacetylase inhibitors in head-and-neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 73, 904-912. https://doi.org/10.1016/j.ijrobp.2008.10.032
  5. Dinh, T. A., Oliva, E. A., Fuller, A. F., Jr., Lee, H. and Goodman, A. (2004) The treatment of uterine leiomyosarcoma. Results from a 10-year experience (1990-1999) at the Massachusetts General Hospital. Gynecol. Oncol. 92, 648-652. https://doi.org/10.1016/j.ygyno.2003.10.044
  6. Dote, H., Cerna, D., Burgan, W. E., Carter, D. J., Cerra, M. A., Hollingshead, M. G., Camphausen, K. and Tofilon, P. J. (2005) Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. Clin. Cancer Res. 11, 4571-4579. https://doi.org/10.1158/1078-0432.ccr-05-0050
  7. Faustino-Rocha, A., Oliveira, P. A., Pinho-Oliveira, J., TeixeiraGuedes, C., Soares-Maia, R., da Costa, R. G., Colaco, B., Pires, M. J., Colaco, J., Ferreira, R. and Ginja, M. (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab. Anim. (N.Y.) 42, 217-224. https://doi.org/10.1038/laban.254
  8. Flotho, C., Claus, R., Batz, C., Schneider, M., Sandrock, I., Ihde, S., Plass, C., Niemeyer, C. M. and Lubbert, M. (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23, 1019-1028. https://doi.org/10.1038/leu.2008.397
  9. Gage, M. M., Nagarajan, N., Ruck, J. M., Canner, J. K., Khan, S., Giuliano, K., Gani, F., Wolfgang, C., Johnston, F. M. and Ahuja, N. (2019) Sarcomas in the United States: recent trends and a call for improved staging. Oncotarget 10, 2462-2474. https://doi.org/10.18632/oncotarget.26809
  10. Goodhead, D. T. (1994) Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int. J. Radiat. Biol. 65, 7-17. https://doi.org/10.1080/09553009414550021
  11. Griffiths, E. A., Choy, G., Redkar, S., Taverna, P., Azab, M. and Karpf, A. R. (2013) SGI-110: DNA methyltransferase inhibitor oncolytic. Drugs Future 38, 535-543. https://doi.org/10.1358/dof.2013.38.8.1980499
  12. Hofstetter, B., Niemierko, A., Forrer, C., Benhattar, J., Albertini, V., Pruschy, M., Bosman, F. T., Catapano, C. V. and Ciernik, I. F. (2010) Impact of genomic methylation on radiation sensitivity of colorectal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 76, 1512-1519. https://doi.org/10.1016/j.ijrobp.2009.10.037
  13. Issa, J. P. J. and Kantarjian, H. M. (2009) Targeting DNA methylation. Clin. Cancer Res. 15, 3938-3946. https://doi.org/10.1158/1078-0432.ccr-08-2783
  14. Issa, J. P., Gharibyan, V., Cortes, J., Jelinek, J., Morris, G., Verstovsek, S., Talpaz, M., Garcia-Manero, G. and Kantarjian, H. M. (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 23, 3948-3956. https://doi.org/10.1200/JCO.2005.11.981
  15. Jain, S., Xu, R., Prieto, V. G. and Lee, P. (2010) Molecular classification of soft tissue sarcomas and its clinical applications. Int. J. Clin. Exp. Pathol. 3, 416-428.
  16. Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., Leighton, J. K., Patel, H., Rahman, A., Sridhara, R., Wang, Y. C. and Pazdur, R. (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604-3608. https://doi.org/10.1158/1078-0432.ccr-04-2135
  17. Kelly, T. K., De Carvalho, D. D. and Jones, P. A. (2010) Epigenetic modifications as therapeutic targets. Nat. Biotech. 28, 1069-1078. https://doi.org/10.1038/nbt.1678
  18. Kim, H., Kim, J., Chie, E., Park, D., Kim, I. and Kim, I. (2012) DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat. Oncol. 7, 39. https://doi.org/10.1186/1748-717X-7-39
  19. Kim, J. G., Bae, J. H., Kim, J. A., Heo, K., Yang, K. and Yi, J. M. (2014) Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS ONE 9, e105405. https://doi.org/10.1371/journal.pone.0105405
  20. Kneisl, J. S., Coleman, M. M. and Raut, C. P. (2014) Outcomes in the management of adult soft tissue sarcomas. J. Surg. Oncol. 110, 527-538. https://doi.org/10.1002/jso.23685
  21. Kondo, Y. and Kondo, S. (2006) Autophagy and cancer therapy. Autophagy 2, 85-90. https://doi.org/10.4161/auto.2.2.2463
  22. Kristensen, L. S., Nielsen, H. M. and Hansen, L. L. (2009) Epigenetics and cancer treatment. Eur. J. Pharmacol. 625, 131-142. https://doi.org/10.1016/j.ejphar.2009.10.011
  23. Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010. https://doi.org/10.1038/nrm2529
  24. Kwon, H. M., Kang, E. J., Kang, K., Kim, S. D., Yang, K. and Yi, J. M. (2017) Combinatorial effects of an epigenetic inhibitor and ionizing radiation contribute to targeted elimination of pancreatic cancer stem cell. Oncotarget 8, 89005-89020. https://doi.org/10.18632/oncotarget.21642
  25. Lambert, L. A., Qiao, N., Hunt, K. K., Lambert, D. H., Mills, G. B., Meijer, L. and Keyomarsi, K. (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68, 7966-7974. https://doi.org/10.1158/0008-5472.CAN-08-1333
  26. Levine, B. (2007) Autophagy and cancer. Nature 446, 745-747. https://doi.org/10.1038/446745a
  27. Li, B., Takeda, T., Tsuiji, K., Wong, T. F., Tadakawa, M., Kondo, A., Nagase, S. and Yaegashi, N. (2013) Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells. Int. J. Gynecol. Cancer 23, 803-808. https://doi.org/10.1097/igc.0b013e31828c9581
  28. Qin, T., Jelinek, J., Si, J., Shu, J. and Issa, J. P. J. (2009) Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood 113, 659-667. https://doi.org/10.1182/blood-2008-02-140038
  29. Qiu, H., Yashiro, M., Shinto, O., Matsuzaki, T. and Hirakawa, K. (2009) DNA methyltransferase inhibitor 5-aza-CdR enhances the radiosensitivity of gastric cancer cells. Cancer Sci. 100, 181-188. https://doi.org/10.1111/j.1349-7006.2008.01004.x
  30. Sato, T., Issa, J. P. J. and Kropf, P. (2017) DNA hypomethylating drugs in cancer therapy. Cold Spring Harb. Perspect. Med. 7, a026948. https://doi.org/10.1101/cshperspect.a026948
  31. Schaefer, I. M., Cote, G. M. and Hornick, J. L. (2017) Contemporary sarcoma diagnosis, genetics, and genomics. J. Clin. Oncol. 36, 101-110. https://doi.org/10.1200/JCO.2017.74.9374
  32. Schuebel, K. E., Chen, W., Cope, L., Glockner, S. C., Suzuki, H., Yi, J. M., Chan, T. A., Neste, L. V., Criekinge, W. V., Bosch, S. V., van Engeland, M., Ting, A. H., Jair, K., Yu, W., Toyota, M., Imai, K., Ahuja, N., Herman, J. G. and Baylin, S. B. (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 3, 1709-1723.
  33. Ta, H. T., Dass, C. R., Choong, P. F. M. and Dunstan, D. E. (2009) Osteosarcoma treatment: state of the art. Cancer Metastasis Rev. 28, 247-263. https://doi.org/10.1007/s10555-009-9186-7
  34. Taby, R. and Issa, J. P. J. (2010) Cancer epigenetics. CA Cancer J. Clin. 60, 376-392. https://doi.org/10.3322/caac.20085
  35. Toro, J. R., Travis, L. B., Wu, H. J., Zhu, K., Fletcher, C. D. M. and Devesa, S. S. (2006) Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978-2001: an analysis of 26,758 cases. Int. J. Cancer 119, 2922-2930. https://doi.org/10.1002/ijc.22239
  36. Trans-Atlantic Retroperitoneal Sarcoma Working Group (2018) Management of metastatic retroperitoneal sarcoma: a consensus approach from the Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG). Ann. Oncol. 29, 857-871. https://doi.org/10.1093/annonc/mdy052
  37. Tsai, H. C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F. V., Shin, J. J., Harbom, K. M., Beaty, R., Pappou, E., Harris, J., Yen, R. W., Ahuja, N., Brock, M. V., Stearns, V., Feller-Kopman, D., Yarmus, L. B., Lin, Y. C., Welm, A. L., Issa, J. P., Minn, I., Matsui, W., Jang, Y. Y., Sharkis, S. J., Baylin, S. B. and Zahnow, C. A. (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21, 430-446. https://doi.org/10.1016/j.ccr.2011.12.029
  38. van Groeningen, C. J., Leyva, A., Brien, A. M. P., Gall, H. E. and Pinedo, H. M. (1986) Phase I and pharmacokinetic study of 5-aza-2'-deoxycytidine (NSC 127716) in cancer patients. Cancer Res. 46, 4831-4836.
  39. Wang, L., Zhang, Y., Li, R., Chen, Y., Pan, X., Li, G., Dai, F. and Yang, J. (2012) 5-Aza-2'-deoxycytidine enhances the radiosensitivity of breast cancer cells. Cancer Biother. Radiopharm. 28, 34-44. https://doi.org/10.1089/cbr.2012.1170
  40. Yoo, C. B. (2007) Delivery of 5-aza-2[prime]-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res. 67, 6400-6408. https://doi.org/10.1158/0008-5472.CAN-07-0251
  41. Yoo, C. B. and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37-50. https://doi.org/10.1038/nrd1930