DOI QR코드

DOI QR Code

다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구

A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory

  • 오우영 (전남대학교 신화학소재공학과) ;
  • 이현용 (전남대학교 화학공학부)
  • Oh, Woo-Young (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2021.08.23
  • 심사 : 2021.09.02
  • 발행 : 2022.01.01

초록

In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

키워드

과제정보

이 논문은 전남대학교 연구년 연구비 지원에 의하여 연구되었음(과제번호: 2019-3842).

참고문헌

  1. Y. Ren, R. Sun, S.H.Y. Chen, C. Du, S. T. Han, and Y. Zhou, Phys. Status Solidi RRL, 15, 2000394 (2021). [DOI: https://doi.org/10.1002/pssr.202000394]
  2. P. Guo, A. M. Sarangan, and I. Agha, Appl. Sci., 9, 530 (2019). [DOI: https://doi.org/10.3390/app9030530]
  3. K. H. Song, S. W. Kim, J. H. Seo, and H. Y. Lee, J. Appl. Phys., 104, 103516 (2008). [DOI: https://doi.org/10.1063/1.3026720]
  4. S. R. Ovshinsky, Phys. Rev. Lett., 21, 1450 (1968). [DOI: https://doi.org/10.1103/PhysRevLett.21.1450]
  5. L. Waldecker, T. A. Miller, M. Rude, R. Bertoni, J. Osmond, V. Pruneri, R. E. Simpson, R. Ernstorfer, and S. Wall, Nat. Mater., 14, 991 (2015). [DOI: https://doi.org/10.1038/nmat4359]
  6. K. H. Song, S. C. Baek, and H. Y. Lee, J. Korean Phys. Soc., 61, 10 (2012). [DOI: https://doi.org/10.3938/jkps.61.10]
  7. C. J. Park, J. B. Yeo, H. Kong, and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 133 (2017). [DOI: https://doi.org/10.4313/jkem.2017.30.3.133]
  8. J. H. Park, S. W. Kim, J. H. Kim, Z. Wu, S. L. Cho, D. Ahn, D. H. Ahn, J. M. Lee, S. U. Nam, and D. H. Ko, J. Appl. Phys., 117, 115703 (2015). [DOI: https://doi.org/10.1063/1.4914909]
  9. S. W. Kim, K. H. Song, and H. Y. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 629 (2008). [DOI: https://doi.org/10.4313/JKEM.2008.21.7.629]
  10. K. Ding, K. Ren, F. Rao, Z. Song, L. Wu, B. Liu, and S. Feng, Mater. Lett., 125, 143 (2014). [DOI: https://doi.org/10.1016/j.matlet.2014. 03.180]
  11. R. Liu, A. Hu, Z. Zhao, H. Zhou, J. Zhai, X. Zhou, S. Song, and Z. Song, Scripta Mater., 178, 324 (2020). [DOI: https://doi.org/10.1016/j.scriptamat.2019.11.054]
  12. K. Jiang, Y. Lu, Z. Li, M. Wang, X. Shen, G. Wang, S. Song, and Z. Song, Mater. Sci. Eng. B, 231, 81 (2018). [DOI: https://doi.org/10.1016/j.mseb.2018.10.002]
  13. L. Zheng, W. Song, Z. Song, and S. Song, ACS Appl. Mater. Interfaces, 11, 45885 (2019). [DOI: https://doi.org/10.1021/acsami.9b16876]
  14. Z. He, W. Wu, X. Liu, J. Zhai, T. Lai, S. Song, and Z. Song, Mater. Lett., 185, 399 (2016). [DOI: https://doi.org/10.1016/j.matlet.2016.09.021]
  15. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, and M. Wuttig, J. Appl. Phys., 87, 4130 (2000). [DOI: https://doi.org/10.1063/1.373041]
  16. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys., 69, 2849 (1991). [DOI: https://doi.org/10.1063/1.348620]
  17. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt, Proc. 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484) (IEEE, Big Sky, USA, 2000) p. 385. [DOI: https://doi.org/10.1109/aero.2000.878512]