DOI QR코드

DOI QR Code

금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구

A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness

  • Min, Hye-Jin (School of Chemical Engineering, Chonnam National University) ;
  • Kang, Ye-Jina (School of Chemical Engineering, Chonnam National University) ;
  • Son, Hye-Won (School of Chemical Engineering, Chonnam National University) ;
  • Sin, So-Hyun (School of Chemical Engineering, Chonnam National University) ;
  • Hwang, Min-Ho (School of Chemical Engineering, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2021.08.23
  • 심사 : 2021.10.01
  • 발행 : 2022.01.01

초록

In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.

키워드

참고문헌

  1. C. Loka and K. S. Lee, Appl. Surf. Sci., 415, 35 (2017). [DOI: https://doi.org/10.1016/j.apsusc.2016.11.082]
  2. D. T. Papanastasiou, A. Schultheiss, D. Munoz-Rojas, C. Celle, A. Carella, J. P. Simonato, and D. Bellet, Adv. Funct. Mater., 30, 1910225 (2020). [DOI: https://doi.org/10.1002/adfm.201910225]
  3. W. Wang, M. Song, T. S. Bae, Y. H. Park, Y. C. Kang, S. G. Lee, S. Y. Kim, D. H. Kim, S. Lee, G. Min, G. H. Lee, J. W. Kang, and J. Yun, Adv. Funct. Mater., 24, 1551 (2014). [DOI: https://doi.org/10.1002/adfm.201301359]
  4. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett., 8, 689 (2008). [DOI: https://doi.org/10.1021/nl073296g]
  5. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science, 305, 1273 (2004). [DOI: https://doi.org/10.1126/science.1101243]
  6. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano, 2, 463 (2008). [DOI: https://doi.org/10.1021/nn700375n]
  7. Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett., 6, 2909 (2006). [DOI: https://doi.org/10.1021/nl062213d]
  8. M. K. Roul, B. Obasogie, G. Kogo, J. R. Skuza, R. M. Mundle, and A. K. Pradhan, J. Appl. Phys., 122, 135110 (2017). [DOI: https://doi.org/10.1063/1.4992007]
  9. M. H. Hwang, H. Kong, J. W. Jeong, and H. Y. Lee, Superlattices Microstruct., 141, 106503 (2020). [DOI: https://doi.org/10.1016/j.spmi.2020.106503]
  10. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, Acta Mater., 61, 5429 (2013). [DOI: https://doi.org/10.1016/j.actamat.2013.05.031]
  11. R. Pandey, B. Angadi, S. K. Kim, J. W. Choi, D. K. Hwang, and W. K. Choi, Opt. Mater. Express, 4, 2078 (2014). [DOI: https://doi.org/10.1364/ome.4.002078]
  12. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]
  13. S. H. Park, S. M. Lee, E. H. Ko, T. H. Kim, Y. C. Nah, S. J. Lee, J. H. Lee, and H. K. Kim, Sci. Rep., 6, 33868 (2016). [DOI: https://doi.org/10.1038/srep33868]
  14. E. H. Ko, H. J. Kim, S. J. Lee, J. H. Lee, and H. K. Kim, RSC Adv., 6, 46634 (2016). [DOI: https://doi.org/10.1039/c6ra08704c]
  15. S. Y. Lee and J. Y. Hwang, Sci. Rep., 10, 9697 (2020). [DOI : https://doi.org/10.1038/s41598-020-66514-8]