DOI QR코드

DOI QR Code

Scheduling of Parallel Offset Printing Process for Packaging Printing

패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링

  • Jaekyeong, Moon (Department of Digital Healthcare Research, Korea Institute of Industrial Technology) ;
  • Hyunchul, Tae (Department of Digital Healthcare Research, Korea Institute of Industrial Technology)
  • 문재경 (한국생산기술연구원 디지털헬스케어연구부문) ;
  • 태현철 (한국생산기술연구원 디지털헬스케어연구부문)
  • Received : 2022.06.30
  • Accepted : 2022.08.29
  • Published : 2022.12.31

Abstract

With the growth of the packaging industry, demand on the packaging printing comes in various forms. Customers' orders are diversifying and the standards for quality are increasing. Offset printing is mainly used in the packaging printing since it is easy to print in large quantities. However, productivity of the offset printing decreases when printing various order. This is because it takes time to change colors for each printing unit. Therefore, scheduling that minimizes the color replacement time and shortens the overall makespan is required. By the existing manual method based on workers' experience or intuition, scheduling results may vary for workers and this uncertainty increase the production cost. In this study, we propose an automated scheduling method of parallel offset printing process for packaging printing. We decompose the original problem into assigning and sequencing orders, and ink arrangement for printing problems. Vehicle routing problem and assignment problem are applied to each part. Mixed integer programming is used to model the problem mathematically. But it needs a lot of computational time to solve as the size of the problem grows. So guided local search algorithm is used to solve the problem. Through actual data experiments, we reviewed our method's applicability and role in the field.

본 연구에서는 패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링 문제를 다루었다. 문제에 대해 두 부분으로 구분하여 접근하였고, 각각 할당 문제와 차량 경로 문제를 적용하여 수리적으로 모형화 하였다. 스케줄링 모형의 현장 적용성은 실험을 통해 검토하였다. 실제 데이터로 구성된 작은 규모의 문제에서는 수리모형으로도 실용적인 시간 내에 최적해를 도출할 수 있었고 이와 비교하여 메타 휴리스틱의 성능을 확인하였다. 기업이 보유한 데이터를 바탕으로 문제 규모를 확장한 실험에서는, 수리모형의 최적해와 비교하여 메타 휴리스틱이 해의 품질을 보장하면서 시간적 효율성을 확보할 수 있었다. 본 연구는 수작업 위주의 기존 방식은 주체(작업자)에 따라 스케줄링의 결과에 불확실성이 존재하는 문제에 주목하였다. 이러한 불확실성은 전체 생산 비용의 증가를 가져오기 때문에 이를 개선할 수 있도록 실용적인 시간 내에 일관된 결과를 제공하는 스케줄링 모형을 제시하였다. 제시한 모형은 단일 라인과 병렬 라인 모두에 적용되어 작업자의 경험에 의존하던 기존의 방식을 개선하는데 도움이 될 것으로 판단되며, 시간 함수의 정의를 통해 다른 요인들을 반영하는 연구로의 확장이 가능하다는 의의를 갖는다. 향후 주문의 납기, 복수의 라인에서 동일 주문 인쇄, 동일하지 않은 라인의 인쇄 용량, 조색 난이도 등을 고려하는 연구로의 확장을 통해 패키징 인쇄 분야의 스마트 생산 시스템 도입에 기여할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(2021383A00-2223-0101)'의 지원에 의하여 이루어진 것입니다.

References

  1. Korea Standard, 2017. Glossary of terms for packaging, in KS T 1001.
  2. Kim, K.S. and Kang, H.S. 2011. An Effect on Customer Attitude and Purchase Intention of Soap Product Package Design - Focused on Soap Product -, Journal of Korea Design Forum. (30): 33-42.
  3. Kang, D.H., Hwang, S.W. and Shim, J.K. 2016. Outline of Korean Packaging Industry, Korean J. Packag. Sci. Tech. 22(3): 135-142. https://doi.org/10.20909/kopast.2016.22.3.135
  4. Tae, H.C. 2019. Introduction to packaging printing process and analysis of optimization issues, Proceedings of the Korean Institute of Industrial Engineers Fall Conference, Seoul, Korea, pp. 361-370.
  5. Hyun, Y.J., Park, J.S. and Tae, H.C. 2021. Prediction of Color Reproduction using the Scattering and Absorption of Coefficients derived from the Kubelka-Munk model in Package Printing, Korean J. Packag. Sci. Tech. 27(3): 203-210. https://doi.org/10.20909/kopast.2021.27.3.203
  6. Seo, J.H. and Tae, H.C. 2020. A Study on Artificial Intelligence Algorithm to Determine Basic Ink Mixing Ratio for Color Prediction of Spot Color - Focused on Offset Printing for Spot Color Prediction through Basic Ink Formulation in the Packaging Printing Market, Journal of Korea Society of Color Studies. 34(4): 47-55. https://doi.org/10.17289/jkscs.34.4.202011.47
  7. Kim, Y.S., Uhm, H.S. and Tae, H.C. 2022. Deep Neural Network Modeling for the Prediction of Reflexibility from Printed Outputs in the Spot Color Printing System - Focusing on the Aggregating and Processing of Dataset from the Real-world Printing System, Journal of Korea Society of Color Studies. 36(1): 5-12.
  8. Tae, H.C. 2019. Development case of color mixing ink amount prediction algorithm in package printing process, Proceedings of the Korean Institute of Industrial Engineers Fall Conference, Seoul, Korea, pp. 3307-3319.
  9. Moon, J.K., Uhm, H.S. and Tae, H.C. 2021. Scheduling of Printing Process in which Ink Color Changes Exist, Journal of Korean Society of Industrial and Systems Engineering. 44(4): 32-42. https://doi.org/10.11627/jksie.2021.44.4.032
  10. Burger, A.P., Jacobs, C.G., van Vuuren, J.H. and Visagie, S.E. 2015. Scheduling multi-color print jobs with sequence-dependent setup times, Journal of Scheduling. 18(2): 131-145. https://doi.org/10.1007/s10951-014-0400-2
  11. Bae, J.H. 2020. Dispatching Rule based on Chromaticity and Color Sequence Priorities for the Gravure Printing Operation, Journal of Korean Society of Industrial and Systems Engineering. 43(3): 10-20. https://doi.org/10.11627/jkise.2020.43.3.010
  12. Kim, S.H., Park, S.E., Yoon, Y.S. and Oh, H.W. 2021. A Study on the Scheduling of Dyeing Processing Production Based on Genetic Algorithm, The Journal of Korean Institute of Communications and Information Sciences. 46(1): 192-200. https://doi.org/10.7840/kics.2021.46.1.192
  13. Rifai, A.P., Mara, S.T.W. and Norcahyo, R. 2022. A two-stage heuristic for the sequence-dependent job sequencing and tool switching problem, Computers & Industiral Engineering. 163.
  14. Dantzig, G.B. and Ramser, J.H. 1959. The Truck Dispatching Problem, Management Science. 6(1): 80-91. https://doi.org/10.1287/mnsc.6.1.80
  15. Hwang, J.H. 2021. Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization, Journal of The Korea Society of Computer and Information. 26(10): 27-35. https://doi.org/10.9708/JKSCI.2021.26.10.027
  16. Voudouris, C. and Tsang, E.P.K. 1999. Guided Local Search and its application to the Travelling Salesman Problem, European Journal of Operational Research. 113(2): 469-499. https://doi.org/10.1016/S0377-2217(98)00099-X