• Title/Summary/Keyword: Methyl orange

Search Result 117, Processing Time 0.03 seconds

Degradation of methyl orange by pulsed corona discharges in aqueous solution (수중 펄스코로나 방전에 의한 메틸오렌지 제거 특성)

  • Lee, Hyeon-Don;Kim, Jong-Oh;Kim, Hyoung-Kab;Chung, Jae-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • A laboratory experiment on methyl orange degradation in pulsed corona discharges was carried out. Effects of operating parameters such as applied voltage, pH, conductivity and initial concentration on methyl orange degradation were investigated. The pulsed corona discharges decreased the pH of solution and increased conductivity, probably due to products generated from methyl orange degradation by corona discharges. The decrease of initial pH enhanced the methyl orange degradation. The methyl orange degradation was fastest in $100{\mu}S/cm$ conductivity solution, followed by 50 and $200{\mu}S/cm$, indicating that $100{\mu}S/cm$ is the most favorable in the aspect of radical generation among the experimented conditions. The methyl orange of initial concentration from 20 to 60mg/L was effectively degraded in pulsed corona discharges. The lower initial concentration of methyl orange, the faster degradation was observed.

A Study on a Passive Sampler for Indoor Formaldehyde Using Methyl Yellow and Methyl Orange Indicator (Methyl yellow와 Methyl orange 지시약을 이용한 실내공기중의 포름알데히드 간이측정기에 대한 연구)

  • Jeong Sang Jin;Jang Jae Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.793-801
    • /
    • 2004
  • A passive sampler has been developed for measuring formaldehyde in air using methyl yellow and methyl orange indicator. It is based on the color change of the TLC plate on reaction with formaldehyde. TLC plates impregnated with three kinds of solutions containing methyl orange, methyl yellow, mixing of methyl yellow and methyl orange were shown rectilinear response to formaldehyde concentration at constant exposure time. The color change of impregnated TLC plate with criteria air pollution, such as NO$_2$, SO$_2$, CO, $O_3$ was investigated. The color change of TLC plate with $O_3$ is larger than other gases.

Study on Surface Enhanced Raman Scattering of Methyl Orange According to the Characteristics of Silver Surface (Silver Surface의 특성에 따른 Methyl Orange의 표면증강라만스펙트럼에 관한 연구)

  • Lee, Chul-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.103-108
    • /
    • 2018
  • In this study, the experiments for surface enhancement of silver mirror substrates were done, where we checked the characteristics of silver surface made by Tollen's method. The surface enhancement of Methyl orange was analyzed by silver surfaces. We observed the Surface Enhanced Raman Spectra of Methyl orange. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. We deduced that the adsorption orientation of Methyl orange was little tilted parallel to the silver surfaces by using of the surface selection rules.

Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation (촉매 오존화 공정에서 메틸오렌지 제거에 미치는 운전변수의 영향)

  • Lee, Myoung-Eun;Kim, Ji-Eun;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.412-417
    • /
    • 2017
  • Removal characteristics of methyl orange and their dependence on operating parameters in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting methyl orange degradation. As the carbon dose increases, the pseudo-first order rate constants of methyl orange degradation increased, resulting in the fast removal of methyl orange. The increase of gaseous ozone concentration enhanced the mass transfer to the aqueous solution, therefore, promoted the methyl orange removal. The methyl orange degradation was not significantly affected by the change of pH in the range of 5~12, and TOC removal was negligibly affected by the variation of pH over 7. The results indicate that the catalytic ozonation can be considered as an effective dye treatment technology.

Heterogeneous Photocatalytic Bleaching of Methyl Orange (광화학반응을 이용한 메틸오렌지의 탈색)

  • Lee, Tai K.;Kim, Dong H.;Kim, Kyung N.;Chungmoo Auh
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.60-68
    • /
    • 1995
  • This work wes performed to investigate the photocatalytic decolorization of waste water from textile industries. Methyl orange was used as a target dye with suspended Hombikat TiO$_2$ photocatalyst with a recirculating annular photoreactor. 1 wt % Pt-doped Hombikat thin film tubular reactor with parabolic reflector also wes usedin this experiment. The pH effect and flow rate effect on photobleaching of 0.012 g/l methyl orange solution, AtpH=3 Colour of methyl orange was completely bleached in 30 min with a 20 W UV lamp.

  • PDF

The Photocatalytic Degradation of Textile Effluent Containing Azo-Dye by UV/TiO2 AOP

  • 이태경;나영수;송승구
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.97-98
    • /
    • 2001
  • Acid Orange 7과 Methyl Orange의 경우, UV 빛을 조사하고 $TiO_2$ powder를 투여하였을 때 120분 이내에 탈색이 완전히 이루어짐으로써 색도를 80% 이상 제거할 수 있었다. 광촉매량이 증가할수록 촉매표면적이 증가하여 광반응 속도의 증가를 가져오나, 과도한 촉매량의 투입은 오히려 UV 빛의 효과적인 투과를 방해함으로써 광반응 속도를 감소시킨 것으로 사료된다. 초기 pH는 반응 속도에 큰 영향을 미치지 못하는 것으로 나타났으며, Orange II는 Methyl Orange보다 초기 pH에 다소 큰 영향을 받았다. 초기 농도가 낮을수록 초기 반응 속도는 증가하여 염료 분해 속도가 빠름을 알 수 있었다.

  • PDF

Photocatalytic Decomposition of Methyl Orange over Alkali Metal Doped LaCoO3 Oxides (알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.718-722
    • /
    • 2017
  • We have investigated the photocatalytic activity for the decomposition of methyl orange on the pure $LaCoO_3$ and metal ion doped $LaCoO_3$ perovskite-typeoxides prepared using microwave process. In the case of pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts, the formation of the perovskite crystalline phase was confirmed regardless of the preparation method. From the results of UV-Vis DRS, the pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better performance of photocatalyst.

Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed $TiO_2$/Y Zeolites using Visible Light

  • Lee, Jeong-Jin;Kim, Yanghee;Minjoong Yoon
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed TiO$_2$/Y zeolites. Nile Red was successfully adsorbed on TiO$_2$/Y zeolites and the absorption profile is very broad with maxima, ca. 630 nm. The peak is largely red-shifted compared to that observed in hydrocarbon solvents. Furthermore, a broad and largely Stokes shifted emission band as observed around 660 nm. The largely Stokes shifted emission band should be originated from the excited state structural changes. In order to understand the photocatalytic activities of Nile Red-adsorbed TiO$_2$/Y zeolite, the photoreduction of Methyl Orange(5.0$\times$10$^{-5}$ M) was studied using visible light beyond 320 nm. Methyl Orange was effectively reduced by Nile Red-adsorbed TiO$_2$/Y zeolite, indicating the photocatalytic activity of Nile Red-adsorbed TiO$_2$ zeolites was enhanced by about eight times higher than that of TiO$_2$/Y zeolite.

  • PDF

Formation of Magnetic Graphene Nanosheets for Rapid Enrichment and Separation of Methyl Orange from Water

  • Zhang, Feng-Jun;Zhang, Zhuo;Xie, Fa-Zhi;Xuan, Han;Xia, Hong-Chen;Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.570-574
    • /
    • 2014
  • Magnetic-graphene nanosheets have been synthesized via a simple effective chemical precipitation method followed by heat treatment. The composite nanosheets are super paramagnetic at room temperature and can be separated by an external magnetic field. The prepared magnetic-graphene nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and BET surface area analysis. The results demonstrated the successful attachment of iron oxide nanoparticles to graphene nanosheets. It was found that the attached nanoparticles were mainly $Fe_3O_4$. The magnetic-graphene nanosheets showed near complete methyl orange removal within 10 mintues and would be practically usable for methyl orange separation from water.