DOI QR코드

DOI QR Code

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection

프리스탠딩 저항형 가스 센서용 산화구리 무전해 도금 탄소스펀지 제조 및 일산화질소 감지

  • Kim, Seokjin (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Ha, Seongmin (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Myeong, Seongjae (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 김석진 (충남대학교 응용화학공학과) ;
  • 하성민 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2022.10.05
  • Accepted : 2022.10.31
  • Published : 2022.12.10

Abstract

Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.

멜라민 스펀지를 열처리하여 제조된 질소함유 탄소 스펀지에 산화구리(CuO)를 무전해 도금하여 기판없이 작동하는 일산화질소(NO) 가스 센서를 제조하였다. 탄소 스펀지 표면의 CuO 함량은 도금 시간이 증가함에 따라 증가하였으나, NO 가스 흡착을 유도한다고 알려져 있는 질소의 함량은 CuO 표면 함량이 증가함에 따라 감소하였다. 미처리 탄소스펀지는 NO 가스에 대하여 18 min에 최대 저항 변화(5.0%)를 나타내었다. 반면에, CuO가 도금된 샘플(CuO30s-CS)은 8 min만에 최대 18.3%의 저항변화를 보였다. 이러한 NO 가스 감지 능력 향상은 CuO로 인하여 탄소 스펀지의 정공 캐리어 수 증가 및 전자전달 촉진에 기인하는 것으로 판단된다. 그러나, 60 s 동안 CuO 무전해 도금된 탄소 스펀지의 NO가스 감지 저항은 1.9%로 오히려 감소하였다. 이는 탄소 스펀지 표면에 CuO로 완전히 도금되어 NO 가스 흡착 능력이 떨어져 저항변화가 감소한 것으로 판단된다. 따라서, CuO가 도금된 탄소 스펀지는 빠르고 우수한 저항변화 특성을 가지고 있어 유용한 NO 가스 센서로 사용할 수 있으나, CuO가 탄소 스펀지 표면을 완전히 도금해서는 안 된다.

Keywords

Acknowledgement

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  2. D. W. Kim, L. K. Kwac, H. G. Kim, and S. K. Ryu, Measuring electrical resistances of ACF sensors by CO2 adsorption in a small chamber, Carbon Lett., 32, 295-304 (2022). https://doi.org/10.1007/s42823-021-00306-6
  3. M.-J. Kim, S. Lee, K. M. Lee, H. Jo, S. S. Choi, and Y.-S. Lee, Effect of CuO introduced on activated carbon fibers formed by electroless plating on the NO gas sensing, J. Ind. Eng. Chem., 60, 341-347 (2018). https://doi.org/10.1016/j.jiec.2017.11.020
  4. H. Naderi, S. Hajati, M. Ghaedi, and J. Espinos, Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO nn type I heterojunction, Sens. Actuators B Chem., 297, 126774 (2019). https://doi.org/10.1016/j.snb.2019.126774
  5. G. Murali, M. Reddeppa, C. Seshendra Reddy, S. Park, T. Chandrakalavathi, M.-D. Kim, and I. In, Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor, ACS Appl. Mater. Interfaces, 12, 13428-13436 (2020). https://doi.org/10.1021/acsami.9b19896
  6. H. W. Lee, J.-K. Kim, and Y.-K. Park, Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar, Carbon Lett., 28, 81-86 (2018). https://doi.org/10.5714/CL.2018.28.081
  7. C. H. Kwak, S. W. Seo, M. I. Kim, J. S. Im, S. C. Kang, NO gas sensor with enhanced sensitivity using activated carbon prepared from pyrolysis fuel oil and polyethylene terephthalate, Appl. Chem. Eng., 32, 42-48 (2021). https://doi.org/10.14478/ACE.2020.1108
  8. J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 25-29 (2020).
  9. E. S. Yoon, J. H. Yoon, S. G. Son, S. J. Kim, B. G. Choi, Development of a portable and disposable pH sensor based on titanium wire with high electrochemical sensing performance, Appl. Chem. Eng., 32, 700-705 (2021).
  10. S. Paik, Selective copper-catalyzed azidation and amination of aryl halides with sodium azide, Appl. Chem. Eng., 32, 224-227 (2021). https://doi.org/10.14478/ACE.2021.1012
  11. J. Zeng and J. Xu, Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation, J. Alloys Compd., 493, L39-L41 (2010). https://doi.org/10.1016/j.jallcom.2009.12.192
  12. A. Rydosz, The use of copper oxide thin films in gas-sensing applications, Coatings, 8, 425 (2018). https://doi.org/10.3390/coatings8120425
  13. I. Raya, H. H. Kzar, Z. H. Mahmoud, A. Al Ayub Ahmed, A. Z. Ibatova, and E. Kianfar, A review of gas sensors based on carbon nanomaterial, Carbon Lett., 32, 1-26 (2021).
  14. F. Wang, Y. Liu, H. Zhao, L. Cui, L. Gai, X. Han, and Y. Du, Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450, 138160 (2022). https://doi.org/10.1016/j.cej.2022.138160
  15. C. Zhang, Z.-L. Hou, B.-X. Zhang, H.-M. Fang, and S. Bi, High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites, Carbon, 137, 467-474 (2018). https://doi.org/10.1016/j.carbon.2018.05.055
  16. Z. Wang, H. Yu, Y. Xiao, L. Guo, L. Zhang, X. Dong, Polydopamine mediated modification of manganese oxide on melamine sponge for photothermocatalysis of gaseous formaldehyde, J. Hazard. Mater., 407, 124795 (2021). https://doi.org/10.1016/j.jhazmat.2020.124795
  17. Y. Li, S. Li, T. Zhang, L. Shi, S. Liu, Y. Zhao, 3D hierarchical Co3O4/reduced graphene oxide/melamine derived carbon foam as a comprehensive microwave absorbing material, J. Alloys Compd., 792, 424-431 (2019). https://doi.org/10.1016/j.jallcom.2019.03.359
  18. A. Stolz, S. Le Floch, L. Reinert, S. M. Ramos, J. TuaillonCombes, Y. Soneda, P. Chaudet, D. Baillis, N. Blanchard, and L. Duclaux, Melamine-derived carbon sponges for oil-water separation, Carbon, 107, 198-208 (2016). https://doi.org/10.1016/j.carbon.2016.05.059
  19. J. Stejskal, J. Vilcakova, M. Jurca, H. Fei, M. Trchova, Z. Kolska, J. Prokes, and I. Krivka, Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen-containing carbons, Coatings, 12, 324 (2022). https://doi.org/10.3390/coatings12030324
  20. R. Zhang, Z. Hu, H. Wei, S. Zhang, and X. Meng, Adsorption of perfluorooctane sulfonate on carbonized poly-melamine-formaldehyde sponge, Sci. Total Environ., 727, 138626 (2020). https://doi.org/10.1016/j.scitotenv.2020.138626
  21. Y. Bai, F. Qin, and Y. Lu, Lightweight Ni/CNT decorated melamine sponge with sensitive strain sensing performance for ultrahigh electromagnetic absorption in both GHz and THz bands, Chem. Eng. J., 429, 132393 (2022). https://doi.org/10.1016/j.cej.2021.132393
  22. K. M. Amin, F. Muench, U. Kunz, and W. Ensinger, 3D NiCo-Layered double Hydroxide@ Ni nanotube networks as integrated free-standing electrodes for nonenzymatic glucose sensing, J. Colloid Interface Sci., 591, 384-395 (2021). https://doi.org/10.1016/j.jcis.2021.02.023
  23. Y. J. Choi, K. M. Lee, K. J. Yun, and Y.-S. Lee, Effect of oxyfluorination on electroless Ni deposition of carbon nanotubes (CNTs) and their EMI shielding properties, Appl. Chem. Eng., 30, 212-218 (2019). https://doi.org/10.14478/ACE.2018.1125
  24. I.-H. Hwang and S. S. Kim, A study of the formation of binary intermediate layer on Pd-based hydrogen separation membrane using various types of metal oxides, Appl. Chem. Eng., 29, 196-200 (2018). https://doi.org/10.14478/ACE.2017.1125
  25. M.-J. Kim, K. H. Kim, Y. Kim, B. Yoo, and Y.-S. Lee, Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts, Carbon Lett., 30, 675-682 (2020). https://doi.org/10.1007/s42823-020-00140-2
  26. H. Duan, Y. Yang, J. Patel, N. Burke, Y. Zhai, P. A. Webley, D. Chen, and M. Long, The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts, Carbon Lett., 25, 33-42 (2018). https://doi.org/10.5714/CL.2018.25.033
  27. J. H. Byeon, H. S. Yoon, K. Y. Yoon, S. K. Ryu, and J. Hwang, Electroless copper deposition on a pitch-based activated carbon fiber and an application for NO removal, Surf. Coat. Technol., 202, 3571-3578 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.032
  28. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors, Chem. Mater., 18, 867-871 (2006). https://doi.org/10.1021/cm052256f
  29. L. Wang, B. Han, Z. Wang, L. Dai, H. Zhou, Y. Li, and H. Wang, Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode, Sens. Actuators B Chem., 207, 791-800 (2015). https://doi.org/10.1016/j.snb.2014.10.125
  30. T.-t. Li, N. Bao, A.-f. Geng, H. Yu, Y. Yang, and X.-t. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization, R. Soc. Open Sci., 5, 171788 (2018). https://doi.org/10.1098/rsos.171788
  31. O. Duman, C.O. Diker, and S. Tunc, Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments, J. Environ. Chem. Eng., 9, 105093 (2021). https://doi.org/10.1016/j.jece.2021.105093
  32. P. Zhang, R. Wang, M. He, J. Lang, S. Xu, and X. Yan, 3D Hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries, Adv. Funct. Mater., 26, 1354-1364 (2016). https://doi.org/10.1002/adfm.201503907
  33. X. Sun, P. He, Z. Gao, Y. Liao, S. Weng, Z. Zhao, H. Song, and Z. Zhao, Multi-crystalline N-doped Cu/CuxO/C foam catalyst derived from alkaline N-coordinated HKUST-1/CMC for enhanced 4-nitrophenol reduction, J. Colloid Interface Sci., 553, 1-13 (2019). https://doi.org/10.1016/j.jcis.2019.06.004
  34. S. C. Kang, J. S. Im, and Y.-S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
  35. Y. Li, J. Liang, Z. Tao, and J. Chen, CuO particles and plates: synthesis and gas-sensor application, Mater. Res. Bull., 43, 2380-2385 (2008). https://doi.org/10.1016/j.materresbull.2007.07.045
  36. X. Bai, Z. Liu, H. Lv, J. Chen, M. Khan, J. Wang, B. Sun, Y. Zhang, K. Kan, and K. Shi, N-doped three-dimensional needle-like CoS2 bridge connection Co3O4 core-shell structure as high-efficiency room temperature NO2 gas sensor, J. Hazard. Mater., 423, 127120 (2022). https://doi.org/10.1016/j.jhazmat.2021.127120
  37. Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, and T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach, Sens. Actuators B Chem., 242, 269-279 (2017). https://doi.org/10.1016/j.snb.2016.10.101
  38. F. Sun, J. Gao, X. Liu, Y. Yang, and S. Wu, Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption, Chem. Eng. J., 290, 116-124 (2016). https://doi.org/10.1016/j.cej.2015.12.044
  39. D.-W. Jeong, K. H. Kim, B. S. Kim, and Y. T. Byun, Characteristics of highly sensitive and selective nitric oxide gas sensors using defect-functionalized single-walled carbon nanotubes at room temperature, Appl. Surf. Sci., 550, 149250 (2021). https://doi.org/10.1016/j.apsusc.2021.149250
  40. F. Su, C. Lu, W. Cnen, H. Bai, and J. F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Sci. Total Environ., 407, 3017-3023 (2009). https://doi.org/10.1016/j.scitotenv.2009.01.007