DOI QR코드

DOI QR Code

Reviews on Adsorption and Catalyst Technology for Removal of Hazardous Substances from Semiconductor Process

반도체 공정에서 발생하는 유해물질 제거를 위한 흡착 및 촉매 공정에 대한 고찰

  • Yoon, Seong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kang, Yu-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jang, Min-Hyeok (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jo, Hyung-Kun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Han, Gyoung-Jae (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Seo, Dong-Jin (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Cho, Hye-Ryeong (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Joo-Il (Department of Chemical and Biological Engineering, Hanbat National University)
  • 윤성진 (한밭대학교 화학생명공학과) ;
  • 김유진 (한밭대학교 화학생명공학과) ;
  • 강유진 (한밭대학교 화학생명공학과) ;
  • 장민혁 (한밭대학교 화학생명공학과) ;
  • 조형근 (한밭대학교 화학생명공학과) ;
  • 한경재 (한밭대학교 화학생명공학과) ;
  • 서동진 (한밭대학교 화학생명공학과) ;
  • 조혜령 (한밭대학교 화학생명공학과) ;
  • 박주일 (한밭대학교 화학생명공학과)
  • Received : 2022.10.19
  • Accepted : 2022.11.02
  • Published : 2022.12.30

Abstract

This paper investigated catalytic and adsorption equations among the technologies for removing hazardous substances generated in the semiconductor process. As the semiconductor industry develops, harmful substances used and discharged in the semiconductor process are also increasing. Hazardous substances adversely affect the global environment in terms of atmospheric and water quality. As regulations on the emission of harmful substances are strengthened in the 21st century, it is expected that there will be limitations in industrial development in the future. Therefore, technology for removing harmful substances generated in semiconductor processes is essential. In this paper, the goal is to remove PFCs, which are harmful substances, through adsorption technology and catalyst technology. Descriptions from the semiconductor process to the technology in which harmful substances generated are removed were summarized.

본 논문은 반도체 공정에서 발생하는 유해물질의 제거기술들 중 촉매식과 흡착식에 대해 알아보았다. 반도체 산업이 발전함에 따라 반도체 공정에서 세척을 위해 사용되어 배출되는 유해물질 또한 증가하고 있다. 유해물질들은 지구 환경에 대기, 수질적으로 악영향을 준다. 21세기에 들어서면서 유해물질 배출에 대한 규제가 강화됨에 따라 향후 산업발전에 한계가 생길 것으로 예상된다. 따라서 반도체 공정에서 발생되는 유해물질의 제거기술이 반드시 필요하다. 본 논문에서는 흡착기술과 촉매기술을 통해 유해물질인 PFCs의 제거를 목표를 두고 정리하였다. 반도체 공정에서부터 생성되는 유해물질이 제거되는 기술까지의 설명을 집약하였다.

Keywords

Acknowledgement

이 논문은 2022년도 한밭대학교 교내학술연구비의 지원을 받아 수행되었습니다.

References

  1. Ministry of Environment, "Development of advanced eco-friendly treatment system for reducing the NOx, CO, and greenhouse gases emission in semiconductor processing", Sejong: Ministry of Environment. (2011).
  2. Jeong, J. G., "Emission Control Technology of Semiconductor Process", Air Cleaning Technology, 29(4), pp. 19~29. (2016).
  3. Kim, I. G. and Yun, S. J., "Cleanroom Gas Removal Technology Using Chemical Filters.", Air Cleaning Technology, 31(4), pp. 34~45. (2018).
  4. Moon, Y. H. and Kim, D. W., "Catalytic equation of exhaust gas treatment technology", Air Cleaning Technology, 14(3), pp. 39~47. (2001).
  5. Ahn, N. G., Kang, S. W., Min, B. H., & Suh, S. S., "Adsorption Isotherms of Tetrafluoromethane and Hexafluoroethane on Various Adsorbents", Journal of Chemical & Engineering Data, 51(2), pp. 451~456. (2006). https://doi.org/10.1021/je0503756
  6. MacQueen, J. T., "Some observations concerning the van't Hoff equation", Journal of Chemical Education, 44(12), p. 755~756. (1967). https://doi.org/10.1021/ed044p755
  7. Suh, S. S., Ahn, N. G. and NA, B. K., "Adsorption and desorption characteristics of CF4 on fixed bed column", Korean Journal of Chemical Engineering, 25, pp. 1518~1523. (2008). https://doi.org/10.1007/s11814-008-0250-8
  8. Liu, Y., "Some consideration on the Langmuir isotherm equation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274(1-3), pp. 34~36. (2006). https://doi.org/10.1016/j.colsurfa.2005.08.029
  9. Hano, T., Takanashi, H., Hirata, M., Urano, K. & Eto, S., "Removal of phosphorus from wastewater by activated alumina adsorbent", Water Science and Technology, 35(7), pp, 39~46. (1997). https://doi.org/10.1016/S0273-1223(97)00112-1
  10. Norouzi, S. H., Badii, K. H. and Doulati Ardejani, F., "Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions", Water Sci Technol, 62(11), pp. 2491~2500. (2010). https://doi.org/10.2166/wst.2010.514
  11. Wang, H. and Luo, P., "Preparation, Kinetics, and Adsorption Mechanism Study of Microcrystalline Cellulose-Modified Bone Char as an Efficient Pb (II) Adsorbent", Water, Air, & Soil Pollution, 231, pp. 1~15. (2020). https://doi.org/10.1007/s11270-019-4368-6
  12. Sessa, D. J. and Palmquist, D. E., "Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein", Bioresource Technology, 99(14), pp. 6360~6364. (2007). https://doi.org/10.1016/j.biortech.2007.11.076
  13. Mgbeahuruike, A. C., Ejioffor, T. E., Christian, O. C., Shoyinka, V. C., Karlsson, M. & Nordkvist, E., "Detoxification of Aflatoxin - Contaminated Poultry Feeds by 3 Adsorbents, Bentonite, Activated Charcoal, and Fuller's Earth", Journal of Applied Poultry Research, 27(4), pp. 461~471. (2018). https://doi.org/10.3382/japr/pfy054
  14. Mondal, P. and George, S., "Removal of Fluoride from Drinking Water Using Novel Adsorbent Magnesia-Hydroxyapatite", Water, Air, & Soil Pollution, 226(8), pp. 1~15. (2015).
  15. Ramesh, P. S., Biplab, C. and Ranadip, K. D., "A review on adsorption cooling systems with silica gel and carbon as adsorbents", Renewable and Sustainable Energy Reviews, 45, pp. 123~134. (2015). https://doi.org/10.1016/j.rser.2015.01.039
  16. Jun, L., Shen, W. T., Long, Q., Qin, Y. H. & Dai, Y. D., "Carbon Nanotube-Prussian Blue Spongiform Adsorbent for Selective Capture of Cesium and Strontium", Applied Mechanics and Materials, 800, pp. 3~7. (2015).
  17. CHoi, S. H. and Park, G. H., "Acid-resistant catalysts and applications for decomposition of perfluorinated compounds", KIPO. (2018).
  18. Park, H. G., Park, N. K., Lee, T. J., Kwon, W. T. & Chang, W. C., "Catalytic Decomposition of SF6 by Hydrolysis over γ - Al2O3 Supported Metal Oxide Catalysts", Clean Technology, 18(1), pp. 83~88. (2012). https://doi.org/10.7464/KSCT.2012.18.1.083