DOI QR코드

DOI QR Code

Hybrid genetic-paired-permutation algorithm for improved VLSI placement

  • Ignatyev, Vladimir V. (Department of the Design Bureau of Modeling and Controlling Systems, Southern Federal University) ;
  • Kovalev, Andrey V. (Engineering Center of Radio and Microelectronic Instrument Making, Southern Federal University) ;
  • Spiridonov, Oleg B. (Department of the Design Bureau of Modeling and Controlling Systems, Southern Federal University) ;
  • Kureychik, Viktor M. (Department of Computer-Aided Design Systems, Southern Federal University) ;
  • Ignatyeva, Alexandra S. (Department of Computer-Aided Design Systems, Southern Federal University) ;
  • Safronenkova, Irina B. (Federal Research Center, The Southern Scientific Center of the Russian Academy of Sciences)
  • Received : 2019.09.04
  • Accepted : 2020.03.02
  • Published : 2021.04.15

Abstract

This paper addresses Very large-scale integration (VLSI) placement optimization, which is important because of the rapid development of VLSI design technologies. The goal of this study is to develop a hybrid algorithm for VLSI placement. The proposed algorithm includes a sequential combination of a genetic algorithm and an evolutionary algorithm. It is commonly known that local search algorithms, such as random forest, hill climbing, and variable neighborhoods, can be effectively applied to NP-hard problem-solving. They provide improved solutions, which are obtained after a global search. The scientific novelty of this research is based on the development of systems, principles, and methods for creating a hybrid (combined) placement algorithm. The principal difference in the proposed algorithm is that it obtains a set of alternative solutions in parallel and then selects the best one. Nonstandard genetic operators, based on problem knowledge, are used in the proposed algorithm. An investigational study shows an objective-function improvement of 13%. The time complexity of the hybrid placement algorithm is O(N2).

Keywords

References

  1. L. Jain and G. A. Singh, Review: Meta-heuristic approaches for solving rectangle packing problem, Int. J. Comput. Eng. Inf. Technol. 4 (2013), no. 2, 410-424.
  2. K. S. P. Kumari, S. Kumar, and S. Sinha, VLSI systems energy management from a software perspective: A literature survey, Perspectives Sci. 8 (2016), 611-613. https://doi.org/10.1016/j.pisc.2016.06.035
  3. L. Jain and A. Singh, Non slicing floorplan representations in VLSI floorplanning: A summary, Int. J. Comput. Appl. 71 (2013), no. 15, 12-19. https://doi.org/10.5120/12433-8962
  4. T. Singha, H. S. Dutta, and M. De, Optimization of floor-planning using genetic algorithm, Procedia Technol. 4 (2012), 825-829. https://doi.org/10.1016/j.protcy.2012.05.135
  5. A. P. Karpenko, Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi [Modern algorithms of search engine optimization: Nature-inspired optimization algorithms], Moscow, Bauman MSTU Publ. 446 (2014), (in Russian).
  6. R. Martins, N. Lourenco, and N. Horta, Multi-objective optimization of analog integrated circuit placement hierarchy in absolute coordinates, Expert Syst. Appl. 42 (2015), no. 23, 9137-9151. https://doi.org/10.1016/j.eswa.2015.08.020
  7. A. Darwish, Bio-inspired computing: algorithms review, deep analysis, and the scope of applications, Future Comput. Inform. J. 3 (2018), no. 2, 1-16. https://doi.org/10.1016/j.fcij.2018.06.001
  8. V. Ignatyev et al., The fuzzy rule base automatic optimization method of intelligent controllers for technical objects using fuzzy clustering, in Proc. Conf. Creativity Intell. Technol. Data Sci. (Bolgograd, Russia), Sept. 2019, pp. 135-152, https://doi.org/10.1007/978-3-030-29750-3_11
  9. V. Ignatyev et al., System for automatic adjustment of intelligent controller parameters, in Proc. Conf. Creativity Intell. Technol. Data Sci. (Bolgograd, Russia), 2019, pp. 226-242, https://doi.org/10.1007/978-3-030-29750-3_18.
  10. E. Sopov, Genetic programming hyper-heuristic for the automated synthesis of selection operators in genetic algorithms, in Proc. Int. Joint Conf. Comput. Intell. (Madeira, Portugal), Nov. 2017, https://doi.org/10.5220/0006497002310238.
  11. P. Orzechowski, W. La Cava, and J. H. Moore, Where are we now? a large benchmark study of recent symbolic regression methods, in Proc. Genetic Evolutionary Comput. Conf. (Kyoto, Japan), July 2018, pp. 1183-1190.
  12. H. Jahanirad and K. Mohammadi, Reliable implementation on SRAM-based FPGA using evolutionary methods, IETE J. Research 59 (2013), no. 5, 597-603. https://doi.org/10.4103/0377-2063.123766
  13. H. Jahanirad, Co-evolutionary approach to reduce soft error rate of implemented circuits on SRAM-based FPGA, Int. J. Comput. Applicat. 180 (2018), no. 43, 42-49. https://doi.org/10.5120/ijca2018917136
  14. J. Funke, S. Hougardy, and J. Schneider, An exact algorithm for wirelength optimal placements in VLSI design, Integr. VLSI J. 52 (2016), 355-366. https://doi.org/10.1016/j.vlsi.2015.07.001
  15. V. Kureychik and A. Kulakov, Algorithm of thermal optimization of placement of basic elements of VLSI, in Proc. IV Int. Research Conf.: Inf. Technol. Sci., Manag., Social Sphere, Medicine (Tomsk, Russia), Dec. 2017 pp. 63-67.
  16. P. Bateson, Evolution, epigenetics and cooperation, J. Biosci. 38 (2013), 1-10. https://doi.org/10.1007/s12038-012-9278-3
  17. M. Rahul, S. Narinder, and S. Yaduvir, Genetic algorithms: Concepts, design for optimization of process controllers, Comput. Inf. Sci. 4 (2011), no. 2, 39-54.
  18. S. Venkatraman and M. Sundhararajan, Particle swarm optimization algorithm for VLSI floorplanning problem, J. Chem. Pharm. Sci. 10 (2017), no. 1, 311-316.
  19. B. Xue, M. Zhang, and W. N. Browne, Particle swarm optimization for feature selection in classification: A multi-objective approach, IEEE Trans. Cybern. 43 (2013), no. 6, 1656-1671. https://doi.org/10.1109/TSMCB.2012.2227469
  20. K. B. Maji et al., An evolutionary algorithm based approach for VLSI floor-planning, in Proc. Int. Conf. Sci. Technol. (Pathum Thani, Thailand), Nov. 2015, pp. 248-253.
  21. L. L. Laudist et al., MOBA: Multi objective bat algorithm for combinatorial optimization in VLSI, Procedia Comput. Sci. 125 (2018), 840-846. https://doi.org/10.1016/j.procs.2017.12.107
  22. S. Basir-Kazeruni et al., SPECO: Stochastic perturbation based clock tree optimization considering temperature uncertainty, Integr. VLSI J. 46 (2013), no. 1, 22-32. https://doi.org/10.1016/j.vlsi.2012.04.004
  23. P. Yang et al., Optimal approach on net routing for VLSI physical design based on Tabu-ant colonies modeling, Appl. Soft Comput. 21 (2014), 376-381. https://doi.org/10.1016/j.asoc.2014.03.033
  24. S. Ghosh and S. Susovon, Fixed structure compensator design using a constrained hybrid evolutionary optimization approach, ISA Trans. 53 (2014), no. 4, 1119-1130. https://doi.org/10.1016/j.isatra.2014.03.008
  25. R. Martins, N. Lourenco, and N. Horta, Multi-objective optimization of analog integrated circuit placement hierarchy in absolute coordinates, Expert Syst. Appl. 42 (2015), no. 23, 9137-9151. https://doi.org/10.1016/j.eswa.2015.08.020
  26. T. Kourany et al., PASSIOT: A Pareto-optimal multi-objective optimization approach for synthesis of analog circuits using Sobol' Indices-based Engine, in Proc. IEEE Int. Midwest Symp. Circuits Syst. (Abu Dhabi, United Arab Emirates), Oct. 2016, pp. 16-19.
  27. J. Chen et al., An adaptive hybrid memetic algorithm for thermalaware non-slicing VLSI floorplanning, Integr. 58 (2017), 245-252. https://doi.org/10.1016/j.vlsi.2017.03.006
  28. P. Sivaranjani and A. Senthil Kumar, Thermal-aware non-slicing VLSI floorplanning using a smart decision-making PSO-GA based hybrid algorithm, Circuits Syst. Signal Process. 34 (2015), no. 11, 3521-3542. https://doi.org/10.1007/s00034-015-0020-x
  29. J. Chen et al., Combining the ant system algorithm and simulated annealing for 3D/2D fixed-outline floorplanning, Appl. Soft Comput. 40 (2016), 150-160. https://doi.org/10.1016/j.asoc.2015.10.045
  30. B. Xue et al., A survey on evolutionary computation approaches to feature selection, IEEE Trans. Evolutionary Comput. 20 (2016), no. 4, 606-626. https://doi.org/10.1109/TEVC.2015.2504420
  31. W. A. Albukhanajer, J. A. Briffa, and Y. Jin, Evolutionary multi-objective image feature extraction in the presence of noise, IEEE Trans. Cybern. 45 (2015), no. 9, 1757-1768. https://doi.org/10.1109/TCYB.2014.2360074
  32. A. Singh and L. Jain, VLSI floorplanning using entropy based intelligent genetic algorithm, Comput., Anal. Netw. (Chandigarh, India), July 2018, pp. 53-71.
  33. G. Chandrasekaran, S. Periyasamy, and P. R. Karthikeyan, Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques, Neural Comput. Applicat. 32 (2019), 5303-5312. https://doi.org/10.1007/s00521-019-04039-6
  34. G. Chandrasekaran, S. Periyasamy, and P. R. Karthikeyan, Test scheduling for system on chip using modified firefly and modified ABC algorithms, SN Appl. Sci. 1 (2019), no. 1, https://doi.org/10.1007/s42452-019-1116-x.
  35. E. Hancer et al. A multiobjective artificial bee colony approach to feature selection using fuzzy mutual information, in Proc. IEEE Congr. Evol. Comput. (Sendai, Japan), 25-28, May 2015, pp. 2420-2427.
  36. M. Gong et al., Evolutionary computation in China: A literature survey, CAAI Trans. Intell. Technol. 1 (2016), no. 4, 334-354. https://doi.org/10.1016/j.trit.2016.11.002
  37. C. Wu, J. Fang, and Q. Li, Multi-material topology optimization for thermal buckling criteria, Comput. Methods Appl. Mech. Eng. 346 (2019), 1136-1155. https://doi.org/10.1016/j.cma.2018.08.015
  38. L. A. Gladkov, V. V. Kureichik, and V. M. Kureichik, Geneticheskie algoritmy [Genetic algorithms], 2nd ed, Moscow: Fizmatlit, 2010, 368.
  39. N. A. Sherwani, Algorithms for VLSI physical design automation, 3rd ed, Kluwer Academic Publisher, USA, (2013).
  40. NanGate FreePDK45 Open Cell Library, http://www.nangate.com/?page_id=2325
  41. V. V. Kureichik and V. Kureichik, Integrated VLSI fragment placement algorithm, Izvestiya SFedU, Eng. Sci. (2015), 196-205.
  42. V. V. Kureichik, V. M. Kureichik, and S. I. Rodzin, Teoriya evolyucionnyh vychislenij [The theory of evolutionary computation], OOO Izdatel'skaya firma "Fiziko-matematicheskaya literatura", Moscow, Russia (2012).