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This paper addresses Very large-scale integration (VLSI) placement optimization, 
which is important because of the rapid development of VLSI design technologies. 
The goal of this study is to develop a hybrid algorithm for VLSI placement. The 
proposed algorithm includes a sequential combination of a genetic algorithm and an 
evolutionary algorithm. It is commonly known that local search algorithms, such as 
random forest, hill climbing, and variable neighborhoods, can be effectively applied 
to NP-hard problem-solving. They provide improved solutions, which are obtained 
after a global search. The scientific novelty of this research is based on the develop-
ment of systems, principles, and methods for creating a hybrid (combined) placement 
algorithm. The principal difference in the proposed algorithm is that it obtains a set 
of alternative solutions in parallel and then selects the best one. Nonstandard genetic 
operators, based on problem knowledge, are used in the proposed algorithm. An 
investigational study shows an objective-function improvement of 13%. The time 
complexity of the hybrid placement algorithm is O(N2).
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1  |   INTRODUCTION

Very large-scale integration (VLSI) is one of the most widely 
used technologies for microchip processors, integrated cir-
cuits (IC), and component design.  In today's world, VLSI 
chips are widely used in various branches of engineering; 
for example, voice and data communication networks, digital 
signal processing, computers, commercial electronics, auto-
mobiles, medicine, etc.

In the present stage of technological development, VLSI 
designs are very complicated and have high dimensionalities. 
In this context, applying traditional computer-aided design al-
gorithms is ineffective because of the length of the computa-
tional process. Moreover, new trends in VLSI manufacturing 
technology restrict the usage of traditional design methods and 
approaches. VLSI technologies have multiple advantages, such 
as compactness, low cost, low power consumption, high reli-
ability, and wide functionality [1,2]. As modern VLSI design 
technologies play a major role in the manufacturing of high-
tech electronic circuit boards, developing new computer-aided 
design methods and algorithms is an urgent task [3].

VLSI placement is a crucial step in modern physical VLSI 
design. Formally, placement involves computing an optimal 
variant for arranging the components on the board, in accor-
dance with a set of criteria [4].

The latest research in VLSI design shows that a great 
many scientists are focused on developing methods and al-
gorithms for multi-objective VLSI placement optimization. 
This is because the VLSI placement determines the speed 
and quality of the routing. Consequently, an optimal element 
arrangement on a chip increases the reliability of the entire 
designed product. It also reduces the size of the structural 
units and minimizes mutual pickups, signal delays, and the 
lengths of the interconnections [5].

Classical methods for multi-objective problem-solv-
ing in computer-aided design (CAD) are branch and bound 
methods, scalarizing objective functions by using weighting 
coefficients, and sequential optimization [6,7]. Reducing a 
multi-objective problem to a single-objective problem with 
sequential optimization has several disadvantages.

First, the solution to a single-objective optimization prob-
lem depends on the parameter restrictions, which are imposed 
by an engineer. If the restrictions are incorrect, a solution will 
have no practical meaning, and/or will not produce an opti-
mal result. Moreover, better solutions may exist, which will 
not be considered.

Second, many optimization algorithms used in modern 
industrial CAD systems are based on single-criterion opti-
mization methods, whereby a set of criteria are optimized se-
quentially. Therefore, the result largely depends on the order 
of the optimization criteria. When sequential optimization 
takes place, multi-objective optimization (MOO) loses its 
meaning.

In CAD, the broadcast method of MOO problem-solving 
is a natural process with system simulations. It generally in-
volves evolutionary and genetic algorithms (GAs), annealing 
modeling algorithms, various swarm-intelligence methods, 
and others [8,9]. Hybrid algorithms combine GAs with other 
search methods. With this method, an alternative solution is 
optimized in each generation. Then, the best solutions are ex-
changed. This mechanism is relatable to Lamarck evolution, 
when each alternative solution can learn, and then transfer 
new "skills" to a new generation [10,11].

For example, in [12,13], evolutionary and co-evolutionary 
methods were developed to reduce the soft error rate, which 
applies to chips in aerospace applications. The proposed 
methods were based on a GA and particle swarm optimiza-
tion (PSO) and improved the convergence rate and cost of the 
former methods.

Algorithm integration allows us to use the advantages 
of both algorithms. To overcome local-optima problems, an 
approach based on a combination of genetic global search 
algorithms and local search algorithms appears to be very 
promising. The consistent performance of global and local 
search algorithms suggests that they are the simplest and 
most effective methods of combining standard cells. A se-
quential strategy is the frame for the hybrid algorithm pro-
posed in this paper.

2  |   LITERATURE REVIEW

As VLSI technologies have developed, new design trends 
have appeared. Because of element size and signal delay re-
duction, over 80% of the total time delay now corresponds to 
interconnection delays. In this context, placement is becom-
ing increasingly important, and new methods are required 
[14,15].

The main advantage of evolutionary methods is that they 
provide a set of alternative solutions for parallel computing. 
They are a powerful tool for overcoming local optima [16,17].

One solution for VLSI placement is PSO [18,19]. This 
approach is very effective when solving for an optimum at the 
initial placement stage.

Maji and others [20] proposed an evolutionary algorithm 
called craziness-based PSO (CRPSO) for optimizing the 
floor planning of a VLSI chip. It was used to speed up local 
searches and improve the precision of the solution. The main 
objective of floor planning optimization is to minimize the 
chip area and the interconnection wirelength.

Laudis and others [21] focused on the multi-objective 
bat algorithm (MOBA), a biologically inspired metaheuris-
tic, and successfully used it to improve the floor planning in 
VLSI design. The algorithm's key idea is to simulate bats' 
echolocation abilities to optimize the placement. The place-
ment was considered as a MOO problem, wherein equal 
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importance was given to wirelength minimization and dead-
space minimization.

To improve the quality of a VLSI implementation, Basir-
Kazeruni [22] proposed a new temperature-uncertainty 
formulation during the clock-tree synthesis process called 
stochastic perturbation-based clock optimization (SPECO). 
The study considers the effect of a chip's temperature varia-
tion on the synchronization quality, which in turn has a great 
influence on the speed of modern VLSI chips. Experimental 
results showed a significant reduction in the dephasing and 
computational complexity.

Later, Yang and associates [23] proposed a new mixed al-
gorithm that combined the ant-colony algorithm and the tabu 
search algorithm to improve the net routing design scheme in 
a VLSI physical design. The results showed that the new al-
gorithm avoided the low convergence rate in the initial stage 
of a basic ant-colony system. The efficiency of the tabu-ant 
colony system improved by approximately 16.667%, com-
pared to existing approaches. Moreover, it effectively avoided 
local optima.

Subhojit and Susovon [24] presented an efficient tech-
nique for designing a fixed-order compensator for com-
pensating the current-mode control architecture of DC-DC 
converters. The proposed algorithm involved combining a 
population search-based optimization approach, specifically, 
PSO, and a local search-based method.

Although many scientists have tried to improve VLSI 
placement by developing new algorithms and techniques, 
the high computational complexity problem has not been ad-
dressed until recently.

Martins and associates [25] focused on the concept of MOO 
while automating the placement in analog integrated circuit 
layout design. An innovative archive-based multi-objective 
simulated-annealing algorithm, operating over an absolute 
representation, is proposed to optimize the placement of each 
proximity group. In contrast to traditional single-objective 
placement approaches, the resulting Pareto fronts, represent-
ing the trade-offs between the optimization objectives of each 
group, are combined, bottom-up, through the design hierarchy, 
until a final front is obtained. In this manner, the problem's 
complexity is reduced, and split over multiple executions of 
the optimization kernel with fewer design variables. Moreover, 
the analog designer becomes aware of the design trade-offs.

Taher and others [26] presented PASSIOT, a new ap-
proach for multi-objective-optimized synthesis of analog 
circuits, based on computing Sobol' indices for the vectors 
of their input variable parameters. PASSIOT was simulated 
using real optimization functions and was proven competitive 
in terms of runtime and solution quality.

In [27], to efficiently optimize a multi-objective thermally 
aware nonslicing floor planning method, an adaptive hy-
brid memetic algorithm was presented to optimize the area, 
total wirelength, and maximum and average temperatures of 

a chip. In [27]'s proposed algorithm, a genetic search algo-
rithm is used as a global search method to explore the search 
space as much as possible. A modified simulated-annealing 
search algorithm is used as a local search method to exploit 
the information in the search region. The global exploration 
and local exploitation are balanced by a death-probability 
strategy. Experimental results on standard test benchmarks 
showed that the proposed algorithm efficiently obtained floor 
plans, while decreasing the average and peak temperatures.

In [28], the authors presented a smart decision-making 
hybrid PSO-GA that tried to reduce the area, wirelength, and 
hotspots by distributing the temperature evenly across the 
chip. A B* tree was used to generate the initial floor plan, 
and later, a PSO-GA–based hybrid algorithm was used to ob-
tain an optimal placement solution. Temperature-driven floor 
planning was considered at the perturbation stage to sepa-
rate the hotspots, thereby reducing the average and maximum 
temperatures. The experimental results showed that the pro-
posed algorithm created an efficient floor plan, with reduced 
average and peak temperatures.

In [29], the authors described a two-phase method that 
combined an ant-colony algorithm and a simulated-anneal-
ing method to conduct VLSI placement with a fixed distance 
between placement rows.

2.1  |  Genetic algorithms for VLSI placement

Genetic algorithms are stochastic search algorithms. 
However, they have evolutionary development strategies, 
which are based on programmable selection and reproduc-
tion mechanisms, leading to near-optimal solutions. The 
effectiveness of a GA depends largely on the specificity of 
the current task, and applying new and modified search pro-
cedures [30]. The specificity of the current problem is con-
sidered during the structure development, and while creating 
the chromosome encoding and decoding principles. When a 
GA is developed, it is desirable to have homologous chromo-
somes (chromosomes with an identical structure and length, 
and containing information on an identical set of solutions). 
It prevents nonrealistic solutions and simplifies the genetic-
operator execution process [31].

Singh and Jain [32] proposed an intellectual approach for 
VLSI placement, which was based on a heuristic placement 
strategy and their entropy-based intelligent genetic algorithm 
(EBIGA). The concept of entropy was introduced in the GA 
to resolve the problem of finding local optima. The experi-
mental results demonstrated that EBIGA could achieve op-
timal and competitive solutions for both fixed-outline and 
outline-free floor plans.

In [33], artificial intelligence-based nature-inspired 
techniques, such as ant-colony optimization (ACO), 
modified ant-colony optimization (MACO), artificial 
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bee-colony optimization (ABC), bat, and firefly algorithms 
were proposed to perform effective test scheduling, thereby 
reducing the total cost of the chip. The performance of the 
various algorithms was evaluated, and it was concluded 
that the bat algorithm performed best in reducing the over-
all testing time of a system-on-a-chip (SoC). Hence, the 
SoC cost was also reduced.

In [34], the ACO, MACO, ABC, Modified ABC, Firefly, 
and Modified Firefly test-scheduling algorithms were tested on 
two SoC benchmark circuits. When compared with the ACO, 
Modified ACO, ABC, Firefly, and Modified Firefly algo-
rithms, the Modified ABC algorithm's testing time was faster 
by 82%, 69%, 25%, 43%, and 48% for the d695 SoC, and 80%, 
73%, 20%, 41%, and 47% for the p22810 SoC, respectively.

The advantage of GAs is a linear evaluation of the time 
and space complexities of the genetic procedures that are 
performed during each iteration. This enables the solution of 
high-dimensional problems, and is important for the VLSI 
design process. Many methods are available for selecting a 
chromosome-mutation engine, and for selecting solutions 
from the population for the next iteration, depending on how 
they influence the algorithm convergence.

It is possible to improve GA efficiency by using its par-
allelization and subsequent chromosome migration among 
the populations [35]. Although GA has natural parallelism 
[36], this ability complicates the algorithm implementation, 
increasing its time and space complexity.

Genetic algorithms also have disadvantages. During a genetic 
search, many solutions, which are dispersed across the search 
space, are examined at the beginning of the search. However, 
some solutions that are worse in comparison with others, but 
belong to an area with points of global optimum, can be lost.

Another problem with a genetic search is that the solutions 
from the evolving population are near-optimal. Genetic search 
mechanisms, which realize stochastic variations, do not often 
find the chain of changes that lead to an optimum. Hence, rea-
sonable changes are needed, which will achieve an optimum.

Analyses have presented a great variety of methods and 
approaches for VLSI placement, indicating the relevance of 
the current research. However, placement optimization with 
regard to the interconnection delay has not been fully covered 
in the reviewed literature. Therefore, this domain should con-
tinue to be studied.

The current study proposes a new hybrid VLSI place-
ment algorithm that involves a sequential strategy combining 
global and local searches.

3  |   PROPOSED METHOD

The additive approach is a well-known method of forming 
complex placement criteria. Each partial optimization crite-
rion contributes to the total value of the complex objective 

function. Then, the significance of its contribution is deter-
mined by the user with the help of a weighting factor for each 
partial criterion [37].

For additive criterion, the complex objective function is 
as follows:

where α, β, and γ are significant weighting factors and satisfy the 
conditions α + β + γ = 1; f H

1
 is the normalized indicator of the 

total circuit length, which is defined as the sum of the semi-pe-
rimeters of the describing rectangles; f H

2
 is the normalized indi-

cator of the number of critical circuits, where the delay exceeds 
the maximum allowed; f H

3
 is the normalized routability indicator, 

which corresponds to the total area of all intersecting areas, which 
are formed by the describing rectangles of the circuits.

The proposed VLSI placement algorithm consists of two 
stages. In the first stage, a global search is performed using 
the modified GA. Subsequently, a local search takes place 
based on the paired-permutation algorithm. A flowchart of 
the computational process is shown in Figure 1.

The input data for the hybrid algorithm are as follows:

-	 Electrical schematic, which includes the information about 
a set of topographical features and a list of circuits that 
will be implemented in a standard cell;

-	 Parameters of the designed standard cell, such as the phys-
ical dimensions of the work field, step of an approximat-
ing grid, and manufacturing technology;

-	 Search parameters, including GA parameters, weighting 
factors, and a number of solutions that will be improved 
with the help of a local search algorithm.

A global search is performed with a modified GA, which 
provides a set of midline placements. A local search involves 

(1)F=�f H
1
+�f H

2
+�f H

3
→opt,

F I G U R E  1   Flowchart of the computational process
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launching the paired permutation (PP) algorithm for each of 
the received placements. Then, the best solution is selected 
from among the local search results.

The adaptation block accomplishes the following 
functions:

-	 Changes the probability of crossover and mutation op-
erators during the GA execution to increase the pop-
ulation diversity at the beginning of the algorithm (by 
increasing the mutation probability). It also increases the 
algorithm convergence rate for the last of the iterations 
(by increasing the probability of crossovers);

-	 Defines the number of interim placements, which are im-
proved by the algorithm, depending on the population di-
versity and size.

The placement of a standard cell is described with a 
chromosome, called an alternative solution (AS), each 
gene of which corresponds to a fixed position in the work 
field.

Each gene contains information about which topographi-
cal feature is assigned to its corresponding position. Hence, 
the gene value can change within the limits of the element 
numbers. The gene values cannot be repeated in the chro-
mosome because an element cannot be assigned to multiple 
positions simultaneously. All gene values in a chromosome 
must be unique; hence, these chromosomes are nonhomolo-
gous and require using modified genetic operators, which do 
not cause illegal solutions [38].

An assessment of the decision quality is conducted in ac-
cordance with the complex objective function. The algorithm 
for calculating a solution to the objective function is written 
as follows:

For each placement i in the population:

1. Evaluate f1i, f2i, and f3i partial objective functions.
1.1. If f1i ≥ f1 max, then f1 max = f1i.
1.2. If f2i ≥ f2 max, then f2 max = f2i.
1.3. If f3i ≥ f3 max, then f3 max = f3i.

2. Evaluate normalized partial objective functions for 
placement i:

3. Evaluate the complex objective function for placement i:

The procedures for evaluating partial objective functions 
are performed in linear time with respect to the number of el-
ements, N, which should be allocated. Therefore, evaluating 

one solution to an objective function has the time complexity 
O(N).

The proposed GA contains crossover, mutation, selection, 
and aging operators. Because chromosomes are nonhomolo-
gous and illegal solutions are not permitted during the algo-
rithm performance, the following modifications of the main 
operators were chosen: a single-point ordered crossover op-
erator and a two-point mutation operator.

The aging operator (AO) selects only “young” individ-
uals that have been living for less than a given number of 
iterations. One iteration is equal to 1 year in the life of an 
individual. The AO enhances the variability of the solutions 
and acts as a counter. If an individual reaches the maximum 
age, it dies and is replaced by a new one, with age zero. The 
individual age neither mutates nor crosses.

The AO helps to decrease the probability of local optima. 
It controls the individual lifetimes and eliminates solutions 
that have been living for several iterations.

It is necessary to assign each individual a value equal to 
zero. If the CO or MO has not been applied to this individual 
during the GA operation, then, in the new population, its age 
will increase by one. If its age exceeds a given value, this 
individual is eliminated.

The crossover point is selected randomly during the 
ordered crossover operator's (CO) performance. Then, the 
left segment of the first parent P1 is copied to the first de-
scendant P'1. The remaining gene values of the first de-
scendant P'1 are copied from left to right from the second 
parent P2, beginning from the cut point, except for the el-
ements that have already been included in P'1. The second 
descendant P'2 is treated in the same manner, using the 
second parent. As a result of the CO execution, the descen-
dant with the better objective-function value is chosen. 
The ordered CO is performed in linear time, with respect 
to the number of elements, N. Hence, its time complexity 
is O(N). An example of an ordered crossover operation is 
shown in Figure 2.

Two cut points are selected randomly during the mutation 
operator (MO) execution. Then, the values are exchanged 
between genes that were chosen within the chromosome. A 
two-point mutation is performed in constant time. Therefore, 
the time complexity of MO is O(1).

A selection operator chooses one solution from the popu-
lation for the subsequent crossover and mutation operations. 
The selection, which is based on a roulette wheel, is used in 

(2)f H
1i
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f1i

f1 max

, f H
2i
=

f2i

f2 max

, f H
3i
=
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F I G U R E  2   Example of an ordered crossover operation

P1: 1 2 3 4 5 6 7 8
P2: 7 1 2 5 3 4 6 8
P'1: 1 2 3 4 6 8 7 5
P'2: 7 1 2 5 6 8 3 4
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the proposed algorithm. In this case, the probability P(xi) of 
selected solution xi is defined by (4):

where F(xi) is the objective-function value of solution xi; and M 
is the population size.

The solution selection, which is based on a roulette wheel, 
is performed in linear time, relative to the population size, M. 
Its time complexity is O(M) [39].

The proposed GA consists of the following procedures:

1. Create the initial solution population.
2. Apply the operations and select the solutions, until the 
specified number of G iterations is performed:
2.1. Apply an ordered CO to the solutions that were se-

lected from the current population by the selection op-
erator, in accordance with the crossover probability P, 
and obtain new solutions.

2.2. Apply a two-point MO to the solutions that were 
selected from the current population by the selection 
operator, in accordance with the probability P of the 
mutation operator, and obtain new solutions.

2.3. Select new and old solutions based on an elitist strat-
egy for the next generation.

3. Output the set of the best solutions (D).

The initial solution population is created randomly and 
based on the "shotgun" strategy to maximally cover an ac-
ceptance placement region and prevent local optima. This 
procedure is performed in linear time, in relation to the num-
ber of elements N. It requires the evaluation of the objective 
function for each new solution; thus, the time complexity of 
this procedure is O(M × N).

Traditionally, the probability of CO and MO is deter-
mined by the number of new solutions that they create. Thus, 
new solutions P(OK) × M are formed by CO and P(OM) × M 
are formed by MO. The proportion of P(OK) and P(OM) af-
fects the solution diversity in the population. Creating a new 
solution requires a selection operator and the recalculation of 
the objective function for each CO and MO call.

Selecting the solutions for the next generation uses the 
elitist strategy and is performed as follows. Solutions from 
the current population are combined with new solutions, 
which were obtained using the genetic operator applica-
tion, and are ranked according to the objective-function 
value. The M best solutions are selected for the new gener-
ation. Therefore, the population size is permanent in each 
generation. The selection for the new generation requires 
an objective-function recalculation for M  ×  2 solutions. 
Hence, the time complexity of the selection procedure is 
O(N × M).

After evaluating the execution time of the GA blocks, a 
theoretical evaluation of the complete algorithm can be con-
ducted. Thus, the GA operating time is proportional to the 
product of the number of allocated elements (N) times the 
population size (M) times the number of genetic search gen-
erations (G): N × M × G. P(CO) and P(MO) are the probabil-
ities of CO and MO, respectively. D is the number of interim 
placements in a hybrid algorithm, which are the search or 
hybrid algorithm parameters.

The paired-permutation algorithm (PPA), which performs 
a local search in the solution neighborhood that was obtained 
by the global search, uses the same solution model and deci-
sion-quality assessment method as the proposed GA.

Following is the PPA execution scheme:

1. Sort the allocated elements of the number of links in 
descending order.
2. Perform the test permutations with the following (N – i) 
elements for each i-th element:
2.1. Evaluate the objective function for each permutation.
2.2. If certain permutations improve the objective func-

tion, select the one among them that improves it in the 
greatest degree.

3. Output the resultant placement.

The described PPA performs N iterations, for each of 
which, (N – i) permutations are performed, where i is the iter-
ation number. Evaluating the objective function does not re-
quire its complete recalculation, which was described above; 
hence, it is performed in constant time: O(1). Thus, the theo-
retical evaluation of the PPA time complexity is O(N2).

Figure 3 shows a flowchart of the developed hybrid place-
ment algorithm. The theoretical evaluation of the hybrid al-
gorithm time complexity is O(N2).

The program that implements the proposed hybrid place-
ment algorithm for VLSI elements in standard cells was de-
veloped using Microsoft Visual Studio 2010 Express and was 
written in C# for execution in a Windows environment.

The developed program allows us to allocate up to 500 device 
features, which connect up to 800 circuits. Files of a certain for-
mat are used for data transfers between the placement program 
and the software for other stages of standard cell-topology syn-
thesis. The user interface of the program is shown in Figure 4.

A program window contains a main menu, the input tools 
for the placement source data, and the tools for presenting the 
results. The main menu controls the input and output data flow, 
searches the results for the optimal placement, selects the tracing 
method (dynamic or static tracing), and provides online help.

The «Search Settings» console is presented in Figure  5. It 
displays the main algorithm parameters, such as the number of 
generations in a genetic search, the solution population size, the 
probability of applying crossover and mutation operators, and the 
number of interim placements, which were obtained by the GA.

(4)P(xi)=
F(xi)

∑M

j=1
F(xj)

,
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When the "Automatic configuration" is selected, the ge-
netic-search adaptation unit automatically selects crossover 
and mutation probability settings, and the number of interim 
solutions.

The «Placement Criteria» console allows priorities to be set 
for partial optimization criteria, such as the total length, number 
of circuits with a critical signal delay, and the traceability while 
the search takes place. Weight values can be inserted in the ed-
itable fields, and determine the contribution of each criterion.

The results of the placement algorithm are displayed on 
the «Search Results» and «Placement» tabs. The first tab 
contains a graph of the objective-function changes, the al-
gorithm run time, and the obtained estimates of the partial 
optimization criteria. The second tab contains a visual repre-
sentation of the obtained placement.

The «Search Results» tab contains a graph of the objec-
tive-function changes that occurred during the placement al-
gorithm performance (Figure 6).

The graph can change dynamically during the algorithm per-
formance (if the corresponding check box is set). In this case, 
values are scaled dynamically, enabling the optimization pro-
cess to be visualized more clearly. If the dynamic output is dis-
abled, the graph will change only after the algorithm completes.

The objective-function diagram consists of two parts, cor-
responding to the different stages of the hybrid algorithm. 
The solid line corresponds to the global genetic search imple-
mentation and the dashed line corresponds to the local search 
implementation.

The «Placement» tab contains a visual representation of the 
resultant placement. In the first stage, a regular grid, which is 
the height and width of a standard cell, is displayed. In the sec-
ond stage, the transistor output is displayed, in accordance with 
its number in the list of elements. The circuit display is also 
provided. The critical circuits, where the signal delay exceeds 
the specified level, are indicated in red; the others are green. 
The color intensity of the circuits depends on the density of 
the links.

The described visualization methods allow us to observe 
the placement quality from the viewpoint of all of the partic-
ular optimization criteria. The number of critical circuits is 
estimated by the proportion of red and green colors.

The traceability is estimated, based on the color intensity 
difference between the different areas of the work field.

F I G U R E  3   Flowchart of the hybrid-placement algorithm
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4  |   RESULTS

The experimental studies are conducted on the presented hy-
brid algorithm to determine the parameters that enable the 
algorithm to achieve globally optimal solutions in the mini-
mum amount of time. They also prove the effectiveness of 
the proposed algorithm.

Experimental studies were conducted for 50 randomly 
generated schemes, and for 50 real cell schemes, which were 
taken from the NanGate library. The randomly generated 
schemes have the following characteristics:

-	 Number of elements  ≤200;
-	 Number of circuits ≤800 (it exceeded the amount of ele-

ments three or four times);
-	 Number of united elements in one circuit.

α, β, and γ are chosen by the decision maker for f1
H, f2

H, 
and f3

H, respectively. As a rule, α = 0.6, β = 0.2, and γ = 0.2; 
however, they can be changed in compliance with a given 
technical design specification. In some cases, recommenda-
tions and expert systems can be applied.

The 45-nm NanGate Open Cell Library [40] is an open 
library of 45-nm standard cells, which is designed for testing 
and researching computer-aided design tools for electronic 
computing equipment. The library contains all widely used 
standard cells, from simple buffers to complex triggers, with 
editable values.

All cells are presented in several variants for standard syn-
thesis routes in the standard cell stages of placement and tracing.

Figure 7A,B shows the placement result, which was ob-
tained using the proposed hybrid algorithm, for a standard 
cell of the NanGate 45-nm Open Cell Library. Figure  7A 
demonstrates the initial electrical circuit (19 elements) and 
Figure 7B shows the obtained placement.

The objective function is improved by 13%, and is shown 
in Figure 8.

A series of experiments with different numbers of N was 
performed to estimate the time-expenditure growth. During 
the experiments, the number of elements was changed from 
20 to 1000 in 20-element increments. The number of gen-
erations and the size of the population remained constant at 
50. The time complexity of the program diagram is shown 
in Figure 9.

The obtained diagram indicates the quadratic nature of the 
algorithm's time complexity, which agrees with the theoreti-
cal estimation obtained previously.

In general, the amount of memory required for a software 
algorithm implementation is equal to the amount of memory 
occupied by the program, output, and intermediate data.

The size of the input and output data is determined by 
the number of elements, circuits, and other standard cell 
parameters, which are specified by a user. The size of the 

intermediate data varies and depends on the search param-
eters, which are also specified by a user. The minimum 
and maximum amounts of memory required for the ex-
perimental-study implementation are 5  MB and 26  MB, 
respectively.

F I G U R E  7   Standard cell placement using NanGate library 
elements. (A) Initial electric circuit, (B) obtained placement

F I G U R E  8   Objective function improvement chart
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The heuristic algorithm effectiveness considers the degree 
of the planned action implementation and the achieved re-
quired objective-function values [41,42].

In accordance with this definition, the efficiency of the 
proposed algorithm can be estimated by the number of glob-
ally optimal solutions obtained in a single launch, as well as 
by the number of independent algorithm runs, which guaran-
tee the achievement of the global optimum.

Because a global placement optimum is not known, all 
solutions that are within 10% of the best solution obtained 
from the series of launches are considered optimal. The prob-
ability of an optimum achievement in at least one indepen-
dent launch is expressed by the relation:

where P1 is the required probability; P2 is the probability of an 
optimum achievement in a single launch; and R is the number 
of launches in the series.

When a probability value P1 is specified, for example, 
99%, the sufficient number of independent launches can be 
calculated:

The probability of achieving an optimum in a single 
launch, P2, depends on the parameter quality of the ge-
netic search; namely, the number of generations in each 
launch, G, and the population size, M. To determine the 
dependence of the probability of global optimum achieve-
ment P2 on the number of search iterations (number of 
generations), G, it is necessary to construct a histogram 
that reflects the probability distribution density (PDD), 
and a histogram of the accumulated frequency, which cor-
responds to the probability distribution integral function 
(PDIF).

Figure 10 shows the results of the experimental character-
istic studies, discussed above. The experiment included 1000 
search algorithm runs with a population size M = 150. The 
maximum iteration number Gmax = 200.

With the help of the integral probability distribution 
function diagram and the time complexity diagram, com-
bination of the optimal population number and number of 
independent runs in the context of time minimization was 
found. The population size is M = 150, the number of re-
quired hybrid algorithm runs is R = 5, and the number of 
generations is G = 30.

To determine the optimal population size, M, it was neces-
sary to build several combined diagrams and select the opti-
mal point that provided the minimum time, from the optimal 
points of all graphs.

5  |   DISCUSSION

The distinctive feature of the proposed hybrid algorithm is 
the sequential application of a modified GA and PPA for 
multi-objective VLSI placement.

For example, compared with [18,19], where an optimal 
VLSI placement is determined using algorithms based on PSO, 
the proposed algorithm optimizes the VLSI placement by con-
sidering several criteria. Thus, a global placement method is 
proposed.

Metaheuristics [20,21,29] consider several optimization 
criteria and provide very good placement results. However, 
compared with our hybrid algorithm, the metaheuristic ap-
proach uses a complex mathematical apparatus, which leads 
to increased time and computational complexity.

Other studies [23,24,28,33,34] present hybrid metaheuris-
tic algorithms for VLSI optimization. However, they require 
significant computational resources, compared with the pro-
posed algorithm.

Compared with [32], the proposed algorithm uses non-
standard genetic operators, which are based on a knowledge 
of the specific problem to be solved. This helps avoid illegal 
solutions in the interim placement stage.

Using memetic algorithms for optimization [27] is also 
associated with long-term local searches and requires further 
study.

6  |   CONCLUSION

VLSI placement is one of the most important design stages 
and is quite relevant because of the appearance of new design 
trends, which require the development of new methods and 
algorithms.

(5)P1 =1−
(

1−P2

)R
,

(6)R=

[

log
(

1−P1

)

log
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)

]

.
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This paper presented a complex VLSI placement algo-
rithm that accomplished the following:

-	 Complex placement criteria were synthesized;
-	 New and modified genetic operators were described by 

considering the specific placement features;
-	 A hybrid VLSI placement algorithm, based on sequen-

tially applying parallel-GA and PPA usage, was presented;
-	 Experimental studies that were carried out showed a 13% 

objective-function improvement;
-	 The theoretical and experimental time complexities of the 

hybrid algorithm were presented (O(N2));
-	 An experimental evaluation of the algorithm time and 

space complexity was described, as well as the test data.

The novelty of the research lies in the choice of opera-
tors, which is based on a knowledge of the current problems, 
alternative solution migrations within several GA iterations, 
obtaining a set of alternative solutions, and selecting a qua-
si-optimal one.

The experimental results proved the efficiency of the pro-
posed algorithm for VLSI placement. It demonstrated the 
usage of the proposed algorithm in the field of VLSI CAD 
multi-objective decision-making designs.

The list of swarm algorithms (ACO, BCA, cuckoo-search 
algorithm, wolf-pack search algorithm, and so forth) was 
assembled by the authors. Further, with the help of hybrid 
approaches and expert and recommendation systems, we 
will experimentally evaluate the placement algorithm effi-
ciency, which depends on current problem knowledge.
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