• Title/Summary/Keyword: nano-particle

Search Result 1,166, Processing Time 0.042 seconds

Comparison of Nano-particle Emission Characteristics in CI Engine with Various Biodiesel Blending Rates by using PPS System (PPS시스템 이용 바이오디젤 혼합율에 따른 극미세입자 배출특성 비교)

  • Kwon, J.W.;Kim, M.S.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • The main purpose of this study is to analyze and compare the nano-particle emission characteristics by 3-different biodiesel blending rates in a CI engine. Nano-particle number density emitted from various operating conditions of compression ignition engine can be investigated by using the PPS (Pegasor Particle Sensor) system. Namely, some particle charged through the corona discharge in real-time can be measured by PPS system. Under the steady state operation of the 2.0L CRDi diesel engine with different operating condition and biodiesel blending rates, the nano-particle number density was analyzed at the downstream position of DOC system. As this research result, more engine load speed and higher the concentration of biodiesel blending rate showed that the nano-particle number density decreases. Also we found that DOC system for clean diesel engine is effectively useful instrument to reduce diesel particulate matter as resource of nano-particle generation.

알루미나 나노 Particle의 분산 평가 및 최적화

  • Park, Guk-Hyo;Sin, Hyo-Sun;Yeo, Dong-Hun;Hong, Yeon-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.251-251
    • /
    • 2009
  • The generation of energy and the cooling of system using thermoelectric semiconductor material have been in spotlight. Thermoelectric effect increases with the decrease of the thermal conductivity. In the thermoelectric devices, thermal conductivity is related to phonon scattering. Therefore, few studies have been conducted in the thermoelectric materials dispersed nano oxide particle for increasing the phonon scattering. However, core-shell structure which nano particle disperses in solvents and then which thermoelectric materials coated on the nano oxide particles has not been reported. In this study, we selected commercial nano powder such as $Al_2O_3$. This nano particle was about 20nm and was crushed aggregate by mechanical treatment. We have developed the effect of the dispersant and the solvent. The properties of particles were evaluated by SEM, TEM, particle size analysis, and BET. Dispersion and dispersion stability were evaluated by electronic microscope and turbidity.

  • PDF

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF

Comparison on Nano-particle Number Measurement Characteristics for Different Particle Generators between Spray type and Soot Type (Spray type과 Soot type 입자발생기별 나노입자 개수농도분포 측정특성 비교)

  • Kim, M.S.;Kwon, J.W.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2012
  • Particulate matters (PM) that is generated by most diesel engine is regulated by the mass concentration measured by the conventional method it had been. Recently, Europe PMP (Particle Measurement Program) decided to start the regulation of vehicle's nano-sized particle number (PN) from the year of 2011 because of nano-particle's higher degree of harm to the human body. So firstly, the standard level of PN emission is introduced in the Euro 5/6 emissions regulation with a limit of $6{\times}10^{11}$ per km for light duty vehicle. Also KPMP(Korea Particle Measurement Program) was organized to copy quickly international technical trend. In this paper, it was investigated the nano-sized PN measurement characteristics for different particle generators between spray type and soot type. And the difference ratio between particle generators, the characteristic of PN concentration, counting efficiency and linearity was analyzed. Then, we make conclusions as followed. When particle diameter is increased, counting efficiency of two generators is decreased. Also Secondary calibration method is more higher 3% than Primary calibration method. Finally, SOF which is included in soot particles is not totally removed so it have great influence on test result of counting efficiency and linearity.

Finer Silver Nano-Particle Producing in Water Utilizing a Dielectric Bed (유전체 층을 이용한 수중 은 나노입자의 소형화 제조)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2250-2255
    • /
    • 2010
  • An fine silver particle has a variety of uses, such as in killing micrograms and as catalysts. Many techniques have been used for the production of the fine particles. Faraday cell, consisting of two silver electrodes in an electrolyte, is unique, but it is hard to get a very fine particle by this method. A finer silver nano-particle producing cell, utilizing a dielectric bed as a lower electric current and higher field controlling means, has been proposed and investigated. The I-V characteristics of the cell and effect of the dielectric bed on the producing finer silver nano-particles have been investigated. The I-V characteristics of the cell with the dielectric bed were different from that of the same system without the bed, due to the increased cell resistance and elevated electric field intensity. It is found that the proposed cell with the dielectric bed can produce finer silver nano-particles effectively, which, however, can be used as one of effective fine silver nano-particle producing means.

Combined nano-particle drug delivery and physiotherapy in treatment of common injuries in dance-sport

  • Weixin Dong;Gang Lu;Yangling Jiang;Fan Zhou;Xia Liu;Chunxia Lu
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.225-237
    • /
    • 2023
  • Combination of novel technologies with traditional physiotherapy in rehabilitation in injured athletes have shown to provide improved time of recovery. In specific, nanodrugs delivery systems are widely utilized as a counterpart to the physiotherapy in injuries in sports. In the present study, we focus on the common injuries in dance-sports, their recovery and the effect combination of nano-particle drug delivery with the physiotherapy practices. In this regard, a comprehensive review on the common injuries in dance sport is provided. Moreover, the researches on the effectiveness of the nano-particle drug delivery in therapy of such injuries and in similar cases are provided. The possibility of using combination of nano-particle drug delivery and physiotherapy is discussed in detail. Finally, using artificial intelligence methods, predictions on the recovery time and after-treatment side-effects is investigated. Artificial Neural Network (ANN) predictions suggested that using nano-particle drug delivery systems along with physiotherapy practices could provide shortened treatment time to recovery in comparison to conventional drugs. Moreover, the post-recover effects are less than the conventional methods.

The Effect of Particle Size on Rheological Properties of Highly Concentrated Ag Nanosol (초 고농도 Ag 나노 졸의 입자크기 제어가 잉크 점성거동에 미치는 영향)

  • Song, Hae-Chon;Nham, Sahn;Lee, Byong-Seok;Choi, Young-Min;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The rheological properties of highly concentrated Ag nano sol depending on particle size were studied. The Ag nano sol was prepared by reducing the Ag ion in aqueous solution. The size of Ag nano particle was controlled by two steps of nucleation and growth, and the thickness of adsorption layer was varied by molecular weight of polyelectrolytes. The polyelectrolytes acted as not only ionic complex agent in ionic state and but also dispersant after formation of Ag nano sol. The effective volume was controlled by combination of varying the molecular weight of polyelectrolytes and the size Ag nano sol. The particle size and the viscosity of nano sol were characterized by particle size analyzer, HR-TEM and cone & plate viscometer. It was found that the 10 nm and 40 nm-sized Ag nano sols were prepared by controlling the nucleation and growth steps, respectively. Finally, we could prepare highly concentrated Ag nano sol over 50 wt%.

Emission Characteristics of Nano-sized Particles in Bio-ethanol Fuelled Engine with Different Injection Type (바이오-에탄올연료 및 분사방식에 따른 엔진 나노입자 배출 특성)

  • Lee, Jin-Wook;Patel, Rishin;Ladommatos, Nicos
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-62
    • /
    • 2009
  • As an experiment investigation, the effects of ethanol blended gasoline fuel with different injection method on nano-sized particle emission characteristics were examined in a 0.5L spark-ignited single-cylinder engine with a compression ratio of 10. Because this engine nano-particles are currently attracting interest due to its adverse health effects and their impact on the environments. So a pure gasoline and an ethanol blended gasoline fuels, namely E85 fuel, used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that the effect of ethanol blending gasoline caused drastic decrease of nano-particle emissions when port fuel injection was used for making better air-fuel mixture than direct fuel injection. Also injection timing, specially direct fuel injection, could be a dominant factor in controlling the exhaust particle emissions.

Particle Emission Characteristics and Measurement of Ultrafine Particles from Laser Printer (사무용기기에서 발생되는 미세입자 측정 및 분석방법 연구)

  • Lee, Kyung Hwan;Kim, Sun Man;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • As the indoor activity increases in recent years, the indoor air quality becomes more important. One of the major contaminants in office space is the copy machines and the laser based printers. These devices usually emit nano-particles and chemical species that may give some health effect. The amount of particles generated by the printers and copy machines depend on printer models, printing speed, toners, papers, humidity and so on. To evaluate the emission rate of nano-particles from Laser Printers, the mass concentration measurement method has been used (BAM, 2004). However, the mass concentration measurement method for nano-particles is tedious and time consuming. Therefore, for the development of a new nano-particle counting method, the nano-particle emission characteristics and size distributions are evaluated.

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF