DOI QR코드

DOI QR Code

한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region

  • 곽병대 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소) ;
  • 우혜진 (서울대학교 지구과학교육과/해양연구소) ;
  • 김희영 (서울대학교 과학교육과) ;
  • 홍성은 (지아이이앤에스) ;
  • 손은하 (국가기상위성센터)
  • Kwak, Byeong-Dae (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Woo, Hye-Jin (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University) ;
  • Kim, Hee-Young (Department of Science Education, Seoul National University) ;
  • Hong, Sung-Eun (GI E&S) ;
  • Sohn, Eun-Ha (National Meteorological Satellite Center)
  • 투고 : 2021.09.30
  • 심사 : 2021.10.30
  • 발행 : 2021.10.31

초록

해상풍은 해양의 표층 해류 및 순환, 혼합층, 열속의 변화를 주도하며 해양-대기 상호작용을 이해할 수 있는 중요한 변수이다. 인공위성의 발달에 따라 산란계 관측 자료를 기반으로 산출한 해상풍은 여러 목적으로 광범위하게 사용되어 왔다. 한반도 연안과 같은 복잡한 해양 환경에서 산란계 관측 해상풍은 해양 및 대기 현상 이해에 중요한 요소이다. 따라서 위성 해상풍의 정확도 검증 결과가 다양한 활용을 위하여 중요하게 활용될 수 있다. 본 연구에서는 대표적인 산란계인 MetOp-A/B (METeorological OPerational satellite-A/B)에 탑재된 ASCAT (Advanced SCATterometer) 해상풍 자료를 한반도 주변의 16개 지점에서 2020년 1월부터 12월까지 실측된 해양기상부이 해상풍 자료와 비교하여 해상풍의 정확도를 검증하였다. 해수면으로부터 4-5 m 고도에서 관측된 부이 바람은 LKB (Liu-Katsaros-Businger) 모델을 활용하여 10 m의 중립 바람으로 변환하였다. 일치점 생산 과정 결과 MetOp-A와 MetOp-B에 대하여 5,544개와 10,051개의 일치점을 만들었다. 각 위성 해상풍 풍속의 평균제곱근오차는 1.36 m s-1와 1.28 m s-1, 편차는 0.44 m s-1와 0.65 m s-1로 나타났다. 산란계의 풍향은 MetOp-A와 MetOp-B에서 각각 -8.03°와 -6.97°의 음의 편차와 32.46°와 36.06°의 평균제곱근오차를 보였다. 이러한 오차들은 해양-대기 경계층 내의 성층과 역학과 관련된 것으로 추정된다. 한반도 주변 해역에서 산란계 해상풍은 특히 풍속이 약한 구간에서 실측 풍속보다 과대추정되었다. 또한 연안으로부터의 거리가 가까워질수록 오차가 증폭되는 특성이 나타났다. 본 연구 결과는 산란계 해상풍 자료를 이용하는 해양-대기 상호작용 및 태풍 연구와 같은 한반도 연안 해역의 예측 모델 발전에 기여할 수 있을 것으로 기대된다.

Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

키워드

과제정보

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2C2009464). 국가기상위성센터의 '기상위성 예보지원 및 융합서비스 개술개발' 사업의 일부 지원으로 수행되었습니다.

참고문헌

  1. Ahn, J.B., Ryu, J.H., Cho, E.H., Park, J.Y., and Ryoo, S.B., 1997, A study of correlations between airtemperature and precipitation of Korea and SST around Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 33(3), 487-495. (in Korean)
  2. Anderson, C., Figa, J., Bonekamp, H., Wilson, J. J. W., Verspeek, J., Stoffelen, A., and Portabella, M., 2011, Validation of backscatter measurements from the advanced scatterometer on MetOp-A. Journal of Atmospheric and Oceanic Technology, 29(1), 77-88. https://doi.org/10.1175/JTECH-D-11-00020.1
  3. Banzon, V. F., Reynolds, R. W., and Smith, T. M., 2010, The role of satellite data in extended reconstruction of sea surface temperatures. Proceedings: "Oceans from Space" Venice 2010, 27-28.
  4. Barthelmie, R. J., Sempreviva, A. M., and Pryor, S. C., 2010, The influence of humidity fluxes on offshore wind speed profiles. In Annales Geophysicae (Vol. 28, No. 5, pp. 1043-1052). Copernicus GmbH. https://doi.org/10.5194/angeo-28-1043-2010
  5. Bentamy, A., Croize-Fillon, D., and Perigaud, C., 2008, Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4(4), 265-274. https://doi.org/10.5194/os-4-265-2008
  6. Bentamy, A., and Fillon, D. C., 2012, Gridded surface wind fields from Metop/ASCAT measurements. International journal of remote sensing, 33(6), 1729-1754. https://doi.org/10.1080/01431161.2011.600348
  7. Bentamy, A., Grodsky, S. A., Carton, J. A., Croize?Fillon, D., and Chapron, B., 2012, Matching ASCAT and QuikSCAT winds. Journal of Geophysical Research: Oceans, 117(C2).
  8. Bentamy, A., Katsaros, K. B., Drennan, W. M., and Forde, E. B., 2002, Daily surface wind fields produced by merged satellite data. Gas Transfer at Water Surfaces, 127, 343-349.
  9. Bentamy, A., Quilfen, Y., and Flament, P., 2002, Scatterometer wind fields: A new release over the decade 1991?2001. Canadian journal of remote sensing, 28(3), 431-449. https://doi.org/10.5589/m02-041
  10. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971, Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Sciences, 28(2), 181-189. https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
  11. Choi, D. Y., Woo, H. J., Park, K., Byun, D. S., and Lee, E., 2018, Validation of sea surface wind speeds from satellite altimeters and relation to sea state bias-focus on wind measurements at Ieodo, Marado, Oeyeondo Stations. Journal of the Korean earth science society, 39(2), 139-153. https://doi.org/10.5467/JKESS.2018.39.2.139
  12. Chou, K. H., Wu, C. C., and Lin, S. Z., 2013, Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. Journal of Geophysical Research: Atmospheres, 118(16), 9011-9021. https://doi.org/10.1002/jgrd.50724
  13. Cornillon, P., and Park, K.A., 2001, Warm core ring velocities inferred from NSCAT. Geophysical research letters, 28(4), 575-578. https://doi.org/10.1029/2000gl011487
  14. Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R. M., Foster, R. C., and Redelsperger, J. L., 2004, The structure of the near-neutral atmospheric surface layer. Journal of Atmospheric Sciences, 61(6), 699-714. https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2
  15. Dyer, A., 1974, A review of flux-profile relationships. Boundary-layer Meteorology, 7(3), 363-372. https://doi.org/10.1007/BF00240838
  16. Ebuchi, N., 1999, Statistical distribution of wind speeds and directions globally observed by NSCAT. Journal of Geophysical Research: Oceans, 104(C5), 11393-11403. https://doi.org/10.1029/98JC02061
  17. Ebuchi, N., Graber, H. C., and Caruso, M. J., 2002, Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Journal of Atmospheric and Oceanic Technology, 19(12), 2049-2062. https://doi.org/10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2
  18. Freilich, M. H., and Dunbar, R. S., 1999, The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. Journal of Geophysical Research: Oceans, 104(C5), 11231-11246. https://doi.org/10.1029/1998JC900091
  19. Graf, J.E., Tsi, W.Y., and Jones, L, 1998, Overview of QuikSCAT mission-a quick deployment of a high resolution, wide swath scanning scatterometer for ocean wind measurement. In Proceedings IEEE Southeastcon '98' Engineering for a New Era', 314-317.
  20. Hasager, C.B., Mouche, A., Badger, M., Bingol, F., Karagali, I., Driesenaar, T., Stoffelen, A., Pena, A., and Longepe, N., 2015, Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sensing of Environment, 156, 247-263. https://doi.org/10.1016/j.rse.2014.09.030
  21. Hersbach, H., 2010, Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27, 721-736. https://doi.org/10.1175/2009JTECHO698.1
  22. Jeong, J.Y., Shim, J.S., Lee, D.K., Min, I.K., and Kwon, J.I., 2008, Validation of QuikSCAT wind with resolution of 12.5 km in the vicinity of Korean Peninsula. Ocean and Polar Research, 30(1), 47-58. (in Korean) https://doi.org/10.4217/OPR.2008.30.1.047
  23. Jung, T. S., and Jeong, J. K., 2013, Spatial distribution and time variation of M 2 tide and M 4 tide in the western coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 25(4), 255-265. https://doi.org/10.9765/KSCOE.2013.25.4.255
  24. Kara, A. B., Wallcraft, A. J., Barron, C. N., Hurlburt, H. E., and Bourassa, M. A., 2008, Accuracy of 10 m winds from satellites and NWP products near land?sea boundaries. Journal of Geophysical Research: Oceans, 113(C10).
  25. Kara, A. B., Wallcraft, A. J., and Bourassa, M. A., 2008, Air?sea stability effects on the 10 m winds over the global ocean: Evaluations of air?sea flux algorithms. Journal of Geophysical Research: Oceans, 113(C4).
  26. Klaes, K. D., Montagner, F., and Larigauderie, C., 2013, Metop-B, the second satellite of the EUMETSAT polar system, in orbit. In Earth Observing Systems XVIII (Vol. 8866, p. 886613). International Society for Optics and Photonics.
  27. Large, W. G., and Pond, S., 1981, Open ocean momentum flux measurements in moderate to strong winds. Journal of physical oceanography, 11(3), 324-336. https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  28. Liu, W. T., and Tang, W., 1996, Equivalent neutral wind. JPL Publication 96-17, Jet Propulsion Laboratory, Pasadena, CA, USA, 22 p.
  29. Liu, W. T., 2002, Progress in scatterometer application. Journal of Oceanography, 58(1), 121-136. https://doi.org/10.1023/A:1015832919110
  30. Liu, W. T., Katsaros, K. B., and Businger, J. A., 1979, Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of Atmospheric sciences, 36(9), 1722-1735. https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
  31. Liu, W. T., Tang, W., and Polito, P. S., 1998, NASA scatterometer provides global ocean?surface wind fields with more structures than numerical weather prediction. Geophysical Research Letters, 25(6), 761-764. https://doi.org/10.1029/98GL00544
  32. Min, S.K., Lee, M.I., Kug, J.S., Kim, Y.H., Lee, J.Y., Cha, D.H., Jeong, J.H., and Son, S.W., 2020, Korean Climate Change Assessment Report 2020 (Chap. 9). Korea Meteorological Administration. (in Korean)
  33. Na, J.Y., 1992, Monthly-mean sea surface winds over the adjacent seas of the Korean Peninsula. The Journal of the Oceanological Society of Korea, 27, 1-10. (in Korean)
  34. OSI SAF, 2019, ASCAT wind product user manual. Version 1.16.
  35. Park, J., Kim, D.W., Jo, Y.H., and Kim, D., 2018, Accuracy evaluation of daily-gridded ASCAT satellite data around the Korean Peninsula. Korean Journal of Remote Sensing, 34(2_1), 213-225. (in Korean) https://doi.org/10.7780/KJRS.2018.34.2.1.5
  36. Park, K.A., Cornillon, P., and Codiga, D. L., 2006, Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research: Oceans, 111(C3).
  37. Park, K.A., Kim, K. R., Kim, K., Chung, J. Y., and Conillor, P. C., 2003, Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometerobserved Wind Speed (NSCAT) over the East (Japan) Sea. Journal of the korean society of oceanography, 38(4), 173-184.
  38. Paulson, C. A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable 42 atmospheric surface layer. Journal of Applied Meteorology, 9, 857-861. https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  39. Pensieri, S., Bozzano, R., and Schiano, M. E., 2010, Comparison between QuikSCAT and buoy wind data in the Ligurian Sea. Journal of Marine Systems, 81(4), 286-296. https://doi.org/10.1016/j.jmarsys.2010.01.004
  40. Pickett, M., Tang, W., Rosenfeld, L., and Wash, C., 2003, QuikSCAT Satellite Comparisons with Nearshore Buoy Wind Data off the U.S. West Coast. Journal of Atmospheric and Oceanic Technology, 20(12), 1869-1879. https://doi.org/10.1175/1520-0426(2003)020<1869:QSCWNB>2.0.CO;2
  41. Renault, L., McWilliams, J. C., and Masson, S., 2017, Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Scientific reports, 7(1), 1-7. https://doi.org/10.1038/s41598-016-0028-x
  42. Risien, C. M., and Chelton, D. B., 2008, A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38(11), 2379-2413. https://doi.org/10.1175/2008JPO3881.1
  43. Rodriguez, E., Gaston, R. W., Durden, S. L., Stiles, B., Spencer, M., Veilleux, L., ... and Dunbar, R. S., 2009, A scatterometer for XOVWM, the extended ocean vector winds mission. In 2009 IEEE Radar Conference (pp. 1-4). IEEE.
  44. Spera, D. A., and Richards, T. R., 1979, Modified power law equations for vertical wind profiles. NASA STI/ Recon Technical Report N, 80, 13623.
  45. Stoffelen, A., and Anderson, D., 1997, Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research: Oceans, 102(C3), 5767-5780. https://doi.org/10.1029/96JC02860
  46. Stoffelen, A., Vogelzang, J., and Verhoef, A., 2010, Verification of scatterometer winds. In 10th international winds workshop (Vol. 20, No. 2, pp. 2010-26).
  47. Suh, Y. S., Jang, L. H., Lee, N. K., and Ishizaka, J., 2004, Feasibility of red tide detection around Korean waters using satellite remote sensing. Fisheries and aquatic sciences, 7(3), 148-162. https://doi.org/10.5657/FAS.2004.7.3.148
  48. Takeyama, Y., Ohsawa, T., Shimada, S., Kozai, K., Kawaguchi, K., and Kogaki, T., 2019, Assessment of the offshore wind resource in Japan with the ASCAT microwave scatterometer. International Journal of Remote Sensing, 40(3), 1200-1216. https://doi.org/10.1080/01431161.2018.1524588
  49. Tang, W., Liu, W. T., and Stiles, B. W., 2004, Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Transactions on Geoscience and Remote sensing, 42(8), 1762-1769. https://doi.org/10.1109/TGRS.2004.831685
  50. Verhoef, A., Portabella, M., and Stoffelen, A., 2012, Highresolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2481-2487. https://doi.org/10.1109/TGRS.2011.2175001
  51. Verspeek, J., Stoffelen, A., Verhoef, A., and Portabella, M., 2012, Improved ASCAT wind retrieval using NWP ocean calibration. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2488-2494. https://doi.org/10.1109/TGRS.2011.2180730
  52. Verspeek, J., Verhoef, A., and Stoffelen, A., 2019, ASCAT-C wind product calibration and validation.
  53. Vogelzang, J., and Stoffelen, A., 2011, NWP model error structure functions obtained from scatterometer winds. IEEE transactions on geoscience and remote sensing, 50(7), 2525-2533. https://doi.org/10.1109/TGRS.2011.2168407
  54. Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa?Saldana, J., 2011, On the quality of high?resolution scatterometer winds. Journal of Geophysical Research: Oceans, 116(C10).
  55. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000, Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850. https://doi.org/10.1126/science.288.5467.847
  56. Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010, Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966-986. https://doi.org/10.1175/2009JCLI3329.1