DOI QR코드

DOI QR Code

인공위성 고도계와 이어도 해양과학기지 관측 자료를 활용한 유의파고 극값 추정 기법 비교

Comparison of Methods for Estimating Extreme Significant Wave Height Using Satellite Altimeter and Ieodo Ocean Research Station Data

  • 우혜진 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 정광영 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실)
  • Woo, Hye-Jin (Department of Earth Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education, Seoul National University) ;
  • Byun, Do-Seung (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Jeong, Kwang-Yeong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Lee, Eun-Il (Ocean Research Division, Korea Hydrographic and Oceanographic Administration)
  • 투고 : 2021.08.19
  • 심사 : 2021.10.12
  • 발행 : 2021.10.31

초록

급격한 기후 변화와 해양 온난화에 의해 지난 수십 년 동안 파고의 변동성이 증가하였다. 상위 1% (또는 5%) 파고와 같은 극한 파고는 국지적인 해역 뿐만 아니라 전 지구 대양에서도 평균 파고에 비해 현저하게 증가하였다. 1991년부터 인공위성 고도계를 활용하여 유의파고를 지속적으로 관측하고 있으며 통계적 기법을 기반으로 100년 빈도 유의파고를 추정하기에 비교적 충분한 자료가 축적되었다. 이어도 해양과학기지에서 유의파고 극값을 추정하기 위하여 2005년부터 2016년까지 위성 고도계 자료를 활용하였다. 대표적인 극값 분석 방법인 Initial distribution Method (IDM)와 Peak over Threshold (PoT)를 위성 도고계 유의파고 관측 자료에 적용하고 이어도 해양과학기지에서 관측된 실측자료와 비교하였다. 이어도 해양과학기 관측 자료에 IDM과 PoT 기법을 적용하여 추정된 100년 빈도 유의파고는 각각 8.17 m와 14.11 m이며, 인공위성 고도계 관측 자료를 활용하였을 때는 각각 9.21 m와 16.49 m이었다. 관측 최대값과의 비교 분석에서 IDM을 활용한 분석은 유의파고 극값을 과소추정 하는 경향을 보였다. 이는 IDM 보다 PoT 기법이 유의파고의 극값을 적절하게 추정하고 있음을 의미한다. PoT 기법의 우수성은 높은 유의파고가 발생하는 태풍의 영향을 받는 이어도 해양과학기지 실측 자료를 활용한 결과에서도 증명되었다. 또한 PoT 기법으로 추정된 유의파고 극값의 안정성은 고도계 자료의 감소에 따라 저하될 수 있음을 확인하였다. 인공위성 고도계 자료를 활용하여 유의파고 극값 추정시 발생할 수 있는 한계점과 인공위성 자료를 검증할 수 있는 자료로써 이어도 해양과학기지 관측 자료의 중요성에 대하여 논의하였다.

Rapid climate change and oceanic warming have increased the variability of oceanic wave heights over the past several decades. In addition, the extreme wave heights, such as the upper 1% (or 5%) wave heights, have increased more than the heights of the normal waves. This is true for waves both in global oceans as well as in local seas. Satellite altimeters have consistently observed significant wave heights (SWHs) since 1991, and sufficient SWH data have been accumulated to investigate 100-year return period SWH values based on statistical approaches. Satellite altimeter data were used to estimate the extreme SWHs at the Ieodo Ocean Research Station (IORS) for the period from 2005 to 2016. Two representative extreme value analysis (EVA) methods, the Initial Distribution Method (IDM) and Peak over Threshold (PoT) analysis, were applied for SWH measurements from satellite altimeter data and compared with the in situ measurements observed at the IORS. The 100-year return period SWH values estimated by IDM and PoT analysis using IORS measurements were 8.17 and 14.11 m, respectively, and those using satellite altimeter data were 9.21 and 16.49 m, respectively. When compared with the maximum value, the IDM method tended to underestimate the extreme SWH. This result suggests that the extreme SWHs could be reasonably estimated by the PoT method better than by the IDM method. The superiority of the PoT method was supported by the results of the in situ measurements at the IORS, which is affected by typhoons with extreme SWH events. It was also confirmed that the stability of the extreme SWH estimated using the PoT method may decline with a decrease in the quantity of the altimeter data used. Furthermore, this study discusses potential limitations in estimating extreme SWHs using satellite altimeter data, and emphasizes the importance of SWH measurements from the IORS as reference data in the East China Sea to verify satellite altimeter data.

키워드

과제정보

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2020R1A2C2009464). 해양수산부 국립해양조사원 연구사업(이어도 해양과학기지 활용 황·동중국해 중장기 해양환경 변화 연구)의 일부 지원을 받아 수행되었습니다.

참고문헌

  1. Alves, J.H.G., and Young, I.R., 2003, On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Applied Ocean Research, 25(4), 167-186. https://doi.org/10.1016/j.apor.2004.01.002
  2. Carter, D.J.T., and Challenor, P.G., 1981, Estimating return values of environmental parameters. Quarterly Journal of the Royal Meteorological Society, 107(451), 259-266. https://doi.org/10.1002/qj.49710745116
  3. Carter, D.J.T., 1993, Estimating extreme wave heights in the NE Atlantic from GEOSAT data, Offshore Technical Report OTH 93396, Health and Safety Executive, London.
  4. Challenor, P.G., Wimmer, W., and Ashton, I., 2004, Climate change and extreme wave heights in the North Atlantic. In Proc. 2004 Envisat and ERS Symposium, European Space Agency.
  5. Chelton, D.B., Reis, J.C., Haines, B.J., Fu, L.L., and Callahan, P.S., 2001, Satellite altimetry, In Fu, L.L., and Cazenave, A. (eds.), Satellite Altimetry and Earth Sciences. Academic, San Diego, California, USA, 1-13.
  6. Chen, G., Bi, S.W., and Ezraty, R., 2004, Global structure of extreme wind and wave climate derived from TOPEX altimeter data. International Journal of Remote Sensing, 25(5), 1005-1018. https://doi.org/10.1080/01431160310001598980
  7. Choi, D.Y., Woo, H.J., Park, K.A., Byun, D.S., and Lee, E., 2018, Validation of sea surface wind speeds from satellite altimeters and relation to sea state bias-focus on wind measurements at Ieodo, Marado, Oeyeondo Stations. Journal of the Korean Earth Science, Society, 39(2), 139-153. https://doi.org/10.5467/JKESS.2018.39.2.139
  8. Chu, P.C., Kuo, Y.-H., and Galanis, G., 2010, Statistical structure of global significant wave heights, In Proc. 20th Conference on Probability and Statistics in Atmospheric Sciences. American Meteorological Society.
  9. Coles, S., Bawa, J., Trenner, L., and Dorazio. P., 2001, An introduction to statistical modeling of extreme values. Springer, London.
  10. Cooper, C.K., and Forristall, G.Z., 1997, The use of satellite altimeter data to estimate the extreme wave climate. Journal of Atmospheric and Oceanic Technology, 14(2), 254-266. https://doi.org/10.1175/1520-0426(1997)014<0254:TUOSAD>2.0.CO;2
  11. Fu, L.L., Chelton, D.B., Le Traon, P.Y., and Morrow, R., 2010, Eddy dynamics from satellite altimetry. Oceanography, 23(4), 14-25. https://doi.org/10.5670/oceanog.2010.02
  12. Goda, Y., 1988, On the methodology of selecting design wave height. In Proc. 21st International Conference on Coastal Engineering, Coastal Engineering.
  13. Goda, Y,. 2000, Random Seas and Design of Maritime Structures. World Scientific, Singapore.
  14. Gumbel, E.J., 1958, Statistics of Extremes. Columbia University Press, New York.
  15. Ha, K.J., Nam, S., Jeong, J.Y., Moon, I.J., Lee, M., Yun, J., Jang, C.J., Kim, Y.S., Byun, D.S., Heo, K.Y., and Shim, J.S., 2019, Observations utilizing Korea Ocean Research Stations and their applications for process studies. Bulletin of the American Meteorological Society, 100(10), 2061-2075. https://doi.org/10.1175/bams-d-18-0305.1
  16. Izaguirre, C., Mendez, F.J., Menendez, M., Luceno, A., and Losada. I.J., 2010, Extreme wave climate variability in southern Europe using satellite data. Journal of Geophysical Research: Oceans, 115(C4), C04009.
  17. Izaguirre, C., Mendez, F.J., Menendez, M., and Losada, I.J., 2011, Global extreme wave height variability based on satellite data. Geophysical Research Letters, 38(10), L10607. https://doi.org/10.1029/2011GL047302
  18. Jang, J.C., Park, K.A., Mouche, A.A., Chapron, B., and Lee, J.H., 2019, Validation of sea surface wind from sentinel-1A/B SAR data in the coastal regions of the korean peninsula. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2513-2529. https://doi.org/10.1109/jstars.2019.2911127
  19. Mathiesen, M., Goda, Y., Hawkes, P.J., Mansard, E., Martin, M.J., Peltier, E., Tompson, E.F., and Van Vledder, G., 1994, Recommended practice for extreme wave analysis. Journal of hydraulic Research, 32(6), 803-814. https://doi.org/10.1080/00221689409498691
  20. Mendez, F.J., Menendez, M., Luceno, A., and Losada, I.J., 2006, Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. Journal of Geophysical Research: Oceans, 111(C7), C07024.
  21. Menendez, M., Mendez, F.J., Losada, I.J., and Graham, N.E., 2008, Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophysical Research Letters, 35(22), L22607. https://doi.org/10.1029/2008GL035394
  22. Naseef, T.M., and Kumar, V.S., 2020, Influence of tropical cyclones on the 100-year return period wave height - A study based on 39-year long ERA5 reanalysis data. International Journal of Climatology, 40(4), 2106-2116. https://doi.org/10.1002/joc.6321
  23. Park, J.J., Park, K.A., Kim, H.Y., Lee, E., Byun, D.S., and Jeong, K.Y., 2020, Validation of satellite SMAP sea surface salinity using Ieodo Ocean Research Station data. Journal of the Korean Earth Science Society, 41(5), 469-477. https://doi.org/10.5467/JKESS.2020.41.5.469
  24. Queffeulou, P., and Croize-Fillon, D., 2017, Global altimeter SWH data set. IFREMER, Brest.
  25. Ruggiero, P., Komar, P.D., and Allan, J.C., 2010, Increasing wave heights and extreme value projections: The wave climate of the US Pacific Northwest. Coastal Engineering, 57(5), 539-552. https://doi.org/10.1016/j.coastaleng.2009.12.005
  26. Sartini, L., Cassola, F., and Besio, G., 2015, Extreme waves seasonality analysis: An application in the Mediterranean Sea. Journal of Geophysical Research: Oceans, 120(9), 6266-6288. https://doi.org/10.1002/2015JC011061
  27. Takbash, A., Young, I.R., and Breivik, O., 2019, Global wind speed and wave height extremes derived from long-duration satellite records. Journal of Climate, 32(1), 109-126. https://doi.org/10.1175/jcli-d-18-0520.1
  28. Tucker, M.J., 1991, Waves in Ocean Engineering - Measurement, Analysis, Interpretation. Ellis Horwood.
  29. Vinoth, J., and Young, I.R., 2011, Global estimates of extreme wind speed and wave height. Journal of Climate, 24(6), 1647-1665. https://doi.org/10.1175/2010JCLI3680.1
  30. Wimmer, W., Challenor, P., and Retzler, C., 2006, Extreme wave heights in the North Atlantic from altimeter data. Renewable Energy, 31(2), 241-248. https://doi.org/10.1016/j.renene.2005.08.019
  31. Woo, H.J., and Park, K.A., 2017, Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea. Deep Sea Research Part II, 143, 1-14. https://doi.org/10.1016/j.dsr2.2016.09.003
  32. Woo, H.J., Park, K.A., Byun, D.S., Lee, J., and Lee, E., 2018, Characteristics of the differences between significant wave height at Ieodo Ocean Research Station and satellite altimeter-measured data over a decade (2004~2016). The Sea, 23(1), 1-19. https://doi.org/10.7850/JKSO.2018.23.1.001
  33. Woo, H.J., Park, K.A., Choi, D.Y., Byun, D.S., Jeong, K.Y., and Lee, E.I., 2019, Comparison of multisatellite sea surface temperatures and in-situ temperatures from Ieodo Ocean Research Station. Journal of the Korean Earth Science Society, 40(6), 613-623. https://doi.org/10.5467/JKESS.2019.40.6.613
  34. Woo, H.J., and Park, K.A., 2021, Estimation of extreme significant wave height in the Northwest Pacific using satellite altimeter data focused on typhoons (1992-2016). Remote Sensing, 13(6), 1063. https://doi.org/10.3390/rs13061063
  35. Young, I.R., Vinoth, J., Zieger, S., and Babanin. A.V., 2012, Investigation of trends in extreme value wave height and wind speed. Journal of Geophysical Research: Oceans, 117(C11), C00J06.
  36. Young, I.R., Zieger, S., and Babanin, A.V., 2011, Global trends in wind speed and wave height. Science, 332(6028), 451-455. https://doi.org/10.1126/science.1197219