DOI QR코드

DOI QR Code

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten

친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가

  • Kim, Seon-Chil (Department of Biomedical Engineering, School of Medicine, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2021.08.13
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.

본 의료기관에서 사용되는 방사선 차폐체는 주로 납을 활용하여 제품과 부속품을 제작한다. 납은 가공성과 경제성이 우수하지만 폐기 시 환경 문제로 인해 사용량을 줄이고 있으며, 오랫동안 사용했을 시 크랙 현상과 중력에 의한 처짐 현상으로 인해 차폐막, 차폐벽, 의료기기 부픔 등으로 장기간 사용하기에는 한계가 있다. 이러한 문제점을 해결하기 위해 구리, 주석 등을 사용하지만, 아직 차폐성능을 제어하기에는 제작 공정에 어려움이 있어 대부분 텅스텐을 많이 사용하고 있다. 그러나 아직 텅스텐의 종류에 따른 특성이 잘 제시되지 못해 다른 차폐재와의 비교가 어렵다. 따라서 본 연구에서는 순수 텅스텐, 탄화텅스텐, 산화 텅스텐을 이용하여 동일한 공정으로 의료방사선 차폐시트를 제작하여 시트 단면의 입자 구성과 차폐성능을 비교하였다. 비교 결과 순수 텅스텐, 탄화텅스텐, 산화 텅스텐 순으로 차폐성능이 우수한 것으로 나타났다.

Keywords

Acknowledgement

This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT(2020M2C8A1056950).

References

  1. M. K. Kalra et al. (2004). Strategies for CT Radiation Dose Optimization. Radiology. 230(3), 619-628. DOI : 10.1148/radiol.2303021726
  2. U. N. S. C. o. t. E. o. A. Radiation and UNSCEAR., Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly with scientific annexes: Vol I Sources (Report & Scientific annexes AE). (United Nations, 2000).
  3. J. M. Shoag et al. (2020). Lead poisoning risk assessment of radiology workers using lead shields. Arch Environ Occup Health. 75(1), 60-64. DOI : 10.1080/19338244.2018.1553843
  4. K. Yue et al. (2009). A new lead-free radiation shielding material for radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
  5. K. Lambert & T. McKeon. (2001). Inspection of lead aprons: criteria for rejection. Health physics. 80(5), 67-69. DOI : 10.1097/00004032-200105001-00008
  6. M. Mastuda & T. Suzuki. (2016). Evaluation of lead aprons and their maintenance and management at our hospital. J Anesth. 30(3), 518-521. DOI : 10.1007/s00540-016-2140-2
  7. C. Hohl et al. (2009). Radiation Dose Reduction to Breast and Thyroid During MDCT: Effectiveness of an In-Plane Bismuth Shield. Acta Radiologica. 47(6), 562-567. DOI : 10.1080/02841850600702150
  8. S. C. Kim. (2018). Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties. Journal of the Korea Convergence Society, 9(12), 99-106. DOI : 10.15207/JKCS.2018.9.12.099
  9. H. Warren-Forward et al. (2007). A comparison of dose savings of lead and lightweight aprons for shielding of 99 m-Technetium radiation. Radiat. Prot. Dosimetry, 124(2), 89-96. DOI : 10.1093/rpd/ncm176
  10. A. Moitra, S. H. Kim, S. G. Kim, S. J. Park, R. M. German & M. F. Horstemeyer. (2010). Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation. Acta Materialia, 58(11), 3939-3951. DOI : 10.1016/j.actamat.2010.03.033
  11. N. J. AbuAlRoos, N. A. B. Amin & R. Zainon. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 165, 1-7. DOI : 10.1016/j.radphyschem.2019.108439
  12. S. C. Kim. (2020). Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet, Journal of the Korea Convergence Society, 11(6), 83-88. DOI : 10.15207/JKCS.2020.11.6.000
  13. S. C. Kim. (2020). Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets, Journal of the Korea Convergence Society, 12(1), 105-110. DOI : 10.15207/JKCS.2021.12.1.105
  14. J. H. Yun, J. Hou, W. G. Jang, J. H. Kim & H. S. Byun. (2019). Preparation and Optimization of Composition of Medical X-ray Shielding Sheet Using Tungsten. Polymer(Korea), 43(3), 346-350. DOI : 10.7317/pk.2019.43.3.346
  15. R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li. & Z. Zhang. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 1-19. DOI : 10.1088/2053-1591/aa6651
  16. N. J. AbuAlRoos, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017
  17. V. Gavrish, N. Cherkashina & T. Chayka. (2020). Investigations of the influence of tungsten carbide and tungsten oxide nanopowders on the radiation protection properties of cement matrix-based composite materials. Journal of Physics: Conference Series, 1652, 1-6. DOI : 10.1088/1742-6596/1652/1/012008
  18. M. S. Al-Buriahi, C. Sriwunkum, H. Arslan, Tonguc. Baris. T & M. A. Bourham. (2020). Investigation of barium borate glasses for radiation shielding applications. Applied Physics A. 126(1), 1-9. DOI : 10.1007/s00339-019-3254-9
  19. E. Sakar, O. F. Ozpolat, B. Alim, M. I. Sayyed & M. Kurudirek. (2020). Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem, 166, 1-31. DOI : 10.1016/j.radphyschem.2019.108496
  20. S. C. Kim. (2021). Analysis of Shielding Performance of Radiation-Shielding Materials According to Particle Size and Clustering Effects. Applied Sciences, 11(9), 1-10. DOI : 10.3390/app11094010
  21. S. C. Kim & J. S. Son. (2021). Double-layered fiber for lightweight flexible clothing providing shielding from low-dose natural radiation. Scientific Reports, 11(1), 1-9. DOI : 10.1038/s41598-021-83272-3
  22. S. C. Kim. (2021). Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Science, 11(4), 1-12. DOI : 10.3390/app11041705
  23. S. C. Kim. (2021). Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance. Journal of the Korea Convergence Society, 4(12), 87-94. DOI : 10.15207/JKCS.2021.12.4.087