DOI QR코드

DOI QR Code

중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China

  • 유봉철 (한국지질자원연구원 DMR 융합연구단)
  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2021.09.07
  • 심사 : 2021.09.29
  • 발행 : 2021.09.30

초록

젠지고우 연-아연 광상은 중국 동북지역에선 가장 규모가 큰 연-아연 광상 중의 하나로 지체구조상 Jiao Liao Ji belt내 Qingchengzi mineral field에 위치한다. 이 광상의 주변지질은 시생대의 그래뉼라이트(granulite)와 이를 관입한 고원생대의 미그마타이트질 화강암과 고-중원생대의 소딕(sodic) 화강암을 부정합으로 피복한 고원생대의 Liaohe 층군 및 이들을 관입한 중생대의 섬록암과 몬조나이틱 화강암으로 구성된다. 이 광상은 고원생대의 Liaohe 층군내 Langzishan 층 및 Dashiqiao 층내에서 층상 광체 및 맥상 광체로 산출되며 층준규제 퇴적분기형 또는 퇴적분기형 광상에 해당된다. 이 광상에서 산출되는 돌로마이트들은 산출 광물조합 및 정출순서를 기초로 1)모암인 돌로마이트(D0), 2)녹색편암상의 변성작용에 의한 층상 광체내 돌로마이트(백색운모, 석영, 칼리장석, 섬아연석, 방연석, 황철석, 유비철석)(D1) 및 3)석영맥과 함께 산출되는 맥상 광체내 돌로마이트(석영, 인회석, 황철석)(D2)로 산출된다. 이들 돌로마이트의 화학조성은 각각 Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06 As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11Mn0.01-0.03As0.01(CO3)2(D2)로써 이론적인 돌로마이트의 화학조성보다 미량원소들의 함량이 높다. 특히, 이들 돌로마이트내 FeO 및 MnO 함량은 각각 0.05-2.06 wt.%, 0.00-0.08 wt.%(D0), 3.53-17.22 wt.%, 0.49-3.71 wt.%(D1) 및 2.32-3.91 wt.%, 0.43-0.95 wt.%(D2)로써 층상 광체에서 산출되는 돌로마이트(D1)에서 높은 함량을 갖는다. 또한 다른 미량원소들은 ZnO, As2O5, PbO, Sb2O5 및 HfO2 원소들이 소량 함유되며 단지층상 광체에서 산출되는 돌로마이트(D1)에서 ZnO 및 PbO 원소들의 함량이 다소 높게 나타난다. 젠지고우 연-아연 광상의 Do 및 D2는 Ferroan 돌로마이트에 해당되며 D1는 철백운석(ankerite)과 Ferroan 돌로마이트에 해당된다. 따라서 1)모암에서 산출되는 돌로마이트(D0)는 고원생대의 Jiao Liao Ji 분지내 해양증발석호(marine evaporative lagoon) 환경에서 퇴적된 Ferroan 돌로마이트, 2)층상 광체내 돌로마이트(D1)는 고원생대의 화성활동 및 녹색편암상의 변성작용에 의한 열수교대작용으로 의한 돌로마이트화작용에 의해 형성된 철백운석(ankerite) 및 Ferroan 돌로마이트 및 3)맥상 광체내 돌로마이트(D2)는 중생대의 화성활동에 수반된 열수용액에 의해 형성된 Ferroan 돌로마이트이다.

The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.

키워드

과제정보

이 연구는 2020년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 융합연구단 사업(No. CRC-15-06-KIGAM) 또는 한국지질자원연구원 융합사업인 "북한 광물자원 탐사기술 실증 및 잠재성 평가(19-8901, 20-8901)" 과제 지원을 받아 수행되었으며 이에 사의를 표한다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 책임편집위원님, 부산대학교 이용문 교수님 및 심사위원님들께 깊이 감사드립니다.

참고문헌

  1. Biondi, J.C., Santos, R.V. and Cury, L.F., 2013, The Paleoproterozoic Aripuana Zn-Pb-Ag (Au, Cu) volcanogenic massive sulfide deposit, Mato Grosso, Brazil: Geology, geochemistry of alteration, carbon and oxygen isotope modeling, and implications for genesis. Economic Geology, 108, 781-811. https://doi.org/10.2113/econgeo.108.4.781
  2. Bouabdellah, M., Sangster, D.F., Leach, D.L., Brown, A.C., Johnson, C. and Emsbo, P., 2012, Genesis of the Touissit-Bou Beker Mississippi Valley-Type District (Morocco-Algeria) and Its Relationship to the Africa-Europe Collision. Economic Geology, 107, 117-146. https://doi.org/10.2113/econgeo.107.1.117
  3. Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z. and Zhang, X., 2005, Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China, 48, 467-476.
  4. Chen, C., Lu, A., Cai, K. and Zhai, Y., 2002, Sedimentary characteristics of Mg-rich carbonate fromations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning province, China. Science in China, 45, 84-92. https://doi.org/10.1007/BF02932210
  5. Deng, G.Q., 1983, Types and main ore controlling factors of the Liaohe group in the middle of Liaodong. Liaoning Acta Geologica Sinica, 1, 53-70 (in Chinese)
  6. Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L. and Chen, B., 2017, Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89, 752-771. https://doi.org/10.1016/j.oregeorev.2017.07.012
  7. Gomez-Rivas, E., Corbella, M., Martin-Martin, J.D., Stafford, S.L., Teixell, A., Bons, P.D., Griera, A. and Cardellach, E., 2014, Reactivity of dolomitizing fluids and Mg source evaluation of fault controlled dolomitization at the Benicassim outcrop analogue (Maestrat basin, E Spain). Marine and Petroleum Geology, 55, 26-42. https://doi.org/10.1016/j.marpetgeo.2013.12.015
  8. Grandia, F., Canals, A., Cardellach, E., Banks, D.A. and Perona, J., 2003, Origin of ore-forming brines in sediment-hosted Zn-Pb deposits of the Basque-Cantabrian Basin, Northern Spain. Economic Geology, 98, 1397-1411. https://doi.org/10.2113/gsecongeo.98.7.1397
  9. Hendry, J.P., Gregg, J.M., Shelton, K.L., Somerville, I. and Crowley, S., 2015, Origin, characteristics and distribution of fault-related and fracture-related dolomitization: Insights from Mississippian carbonates, Isle of Man, UK. Sedimentology, 62, 717-752. https://doi.org/10.1111/sed.12160
  10. Jiang, S.Y. and Wei, J.Y., 1989, Geochemistry of the Qingchengzi lead-zinc deposit. Mineral Deposits, 8, 20-28 (in Chinese with English abstract).
  11. Johnson, A.W., Shelton, K.L., Gregg, J.M., Somerville, I.D., Wright, W.R. and Nagy, Z.R., 2009, Regional studies of dolomites and their included fluids: Recognizing multiple chemically distinct fluids during the complex diagenetic history of Lower Carboniferous (Mississippian) rocks of the Irish Zn-Pb ore field. Mineralogy and Petrology, 96, 1-18. https://doi.org/10.1007/s00710-008-0038-x
  12. Konari, M.B. and Rastad, E., 2018, Nature and origin of dolomitization associated with sulphide mineralization: New insights from the Tappehsorkh Zn-Pb (-Ag-Ba) deposit, Irankuh mining district, Iran. Geological Journal, 53, 1-21. https://doi.org/10.1002/gj.2875
  13. Li, J.A., Cai, W.Y., Wang, K.Y., Liu, H.I., Konare, Y., Qian, Y., Lee, G.J. and Yoo, B.C., 2019, Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchenzi Pb-Zn deposit, Northeastern China. Journal of Asian Earth Sciences, 184, 104009. https://doi.org/10.1016/j.jseaes.2019.104009
  14. Li, D.D., Wang, Y.W., Wang, J.B., Lai, C.K., Qiu, J.Z., Wang, W, Li, S.H. and Zhang, Z.C., 2021, Iron isotopes as an ore-fluid tracer: Case study of Qingchengzi Pb-Zn-Au(-Ag) orefield in Liaoning, NE China. Resource Geology, 71, 283-295. https://doi.org/10.1111/rge.12261
  15. Li, S.Z., Zhao, G.C., Santosh, M., Liu, X. and Dai, L.M., 2011, Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao-Liao-Ji belt, North China Craton: A review. Geological Journal, 46, 525-543. https://doi.org/10.1002/gj.1282
  16. Li, S.Z., Zhao, G.C., Sun, M., Han, Z.Z., Luo, Y., Hao, D.F. and Xia, X.P., 2005, Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24, 659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
  17. Li, Z., Chen, B. and Wei, C., 2017, Is the Paleoproterozoic Jiao-Liao-Ji belt (North China Craton) a rift?. International Journal of Earth Sciences, 106, 355-375. https://doi.org/10.1007/s00531-016-1323-2
  18. Liu, G.P., 1999, Isospatial metallogenesis in Qingchengzi ore filed, Liaoning, Geological Exploration for Non-ferrous Metals, 8, 277-282 (in Chinese with English abstract).
  19. Ma, Y.B., Xing, S.W., Zhang, Z.J., Wang, Y. and Zhang, Y., 2014, Rb-Sr isotopic age of sphalerites from Qingchengzi stratiform Pb-Zn ores and its implication for the ore forming process. Acta Geologica Sinica, 88, 996-998. https://doi.org/10.1111/1755-6724.12378_17
  20. Ma, Y.B., Bagas, L., Xing, S.W., Zhang, S.T., Wang, R.J., Li, N., Zhang, Z.J., Zou, Y.F., Yang, X.Q., Wang, Y. and Zhang, Y., 2016, Genesis of the stratiform Zhenzigou Pb-Zn deposit in the North China Craton: Rb-Sr and C-O-S-Pb isotope constraints. Ore Geology Reviews, 79, 88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009
  21. Morrow, D.W., 1998, Regional subsurface dolomitization: Models and constraints. Geoscience Canada, 25, 57-70.
  22. Nagy, Z.R., Gregg, J.M., Shelton, K.L., Becker, S.P., Somerville, I.D. and Johnson, A.W., 2004, Early dolomitization and fluid migration through the Lower Carboniferous carbonate platform in the SE Irish Midlands: implications for reservoir attributes. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications 235, 367-392.
  23. Rajabi, A., Rastad, E., Canet, C. and Alfonso, P., 2015, The early Cambrian Chahmir shale-hosted Zn-Pb deposit, Central Iran: An example of vent-proximal SEDEX mineralization. Mineralium Deposita, 50, 571-590. https://doi.org/10.1007/s00126-014-0556-x
  24. Reinhold, C., 1998, Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, 121, 71-95. https://doi.org/10.1016/S0037-0738(98)00077-3
  25. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y. and Zhong, N., 2017, Dolomite geochemistry of the Cambrian Longwangmiao formation, eastern Sichuan basin: Implication for dolomitization and reservoir prediction. Petroleum Research, 2, 64-76. https://doi.org/10.1016/j.ptlrs.2017.06.002
  26. Song, Y.H., Yang, F.C., Yan, G.L., Wei, M.H. and Shi, S.S., 2017, Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province. Geology and Exploration, 53, 259-269 (in Chinese with English abstract).
  27. Wang, Y.C., Wang, K.Y., Zhang, S., Liang, Y.H., Li, J.F., Fu, L.J. and Wang, Z.G., 2015, Characteristics of hydrothermal superposition mineralization and fluid origins of the Xiaotongjiapuzi gold deposit in Liaoning Province, Geology and Exploration, 51, 79-87 (in Chinese with English abstract).
  28. Wilkinson, J.J., 2010, A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Economic Geology, 105, 417-442. https://doi.org/10.2113/gsecongeo.105.2.417
  29. Wilkinson, J.J., Eyre, S.L. and Boyce, A.J., 2005, Ore-forming processes in Irish-Type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulphides at the Lisheen mine. Economic Geology, 100, 63-86. https://doi.org/10.2113/100.1.0063
  30. Wright, W.R., Somerville, I.D., Gregg, J.M., Shelton, K.L. and Johnson, A.W., 2004, Irish Lower Carboniferous replacement dolomite: Isotopic modelling evidence for a diagenetic origin involving low-temperature modified seawater. In: The geometry and petrogenesis of dolomite hydrocarbon reservoirs, Braithwaith, C.J., Rizzi, G., Darke, G. (eds), London: Geological Society, London, Special Publications, 235, 75-97.
  31. Yoo, B.C., 2021, Occurrence and chemical composition of dolomite from Komdok Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 34, 107-120. https://doi.org/10.22807/KJMP.2021.34.2.107
  32. Yu, G., Chen, J.F., Xue, C.J., Chen, Y.C., Chen, F.K. and Du, X.Y., 2009, Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geology Reviews, 35, 367-382. https://doi.org/10.1016/j.oregeorev.2008.11.009
  33. Zentmyer, R.A., Pufahl, P.K., James, N.P. and Hiatt, E.E., 2011, Dolomitization on an evaporitic Paleoproterozoic ramp: Widespread synsedimentary dolomite in the Denault Formation, Labrador Trough, Canada. Sedimentary Geology, 238, 116-131. https://doi.org/10.1016/j.sedgeo.2011.04.007
  34. Zhai M., Zhang, X.H., Zhang, Y.B., Wu, F.Y., Peng, P., Li, Q.L., Li, Z., Guo, J., Li, T.S., Zhao, L., Zhou, L.G. and Zhu, X., 2019, The geology of North Korea: An overview. Earth Science Reviews, 194, 57-96. https://doi.org/10.1016/j.earscirev.2019.04.025
  35. Zhou, L.L., Zeng, Q.D., Liu, J.M., Duan, X.X., Sun, G.T., Wang, Y.B. and Chen, P.W., 2020, Tracing mineralization history from the compositional textures of sulfide association: A case study of the Zhenzigou stratiform Zn-Pb deposit, NE China. Ore Geology Reviews, 126, 103792. https://doi.org/10.1016/j.oregeorev.2020.103792