DOI QR코드

DOI QR Code

제올라이트-W의 압력전달매개체에 따른 체적탄성률 비교 연구

Comparative Compressional Behavior of Zeolite-W in Different Pressure-transmitting Media

  • 성동훈 (전남대학교 지구환경과학부) ;
  • 김현수 (전남대학교 지구환경과학부) ;
  • 김표상 (전남대학교 지구환경과학부) ;
  • 이용문 (부산대학교 지질환경과학과)
  • Seoung, Donghoon (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim, Hyeonsu (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Kim, Pyosang (Department of Earth and Environmental Sciences, Chonnam National University) ;
  • Lee, Yongmoon (Department of Geological Sciences, Pusan National University)
  • 투고 : 2021.08.22
  • 심사 : 2021.09.28
  • 발행 : 2021.09.30

초록

본 연구는 압력을 이용한 제올라이트 내 중금속 양이온 또는 CO2 기체 포집 등의 응용연구를 하기 위한 기초 단계로 제올라이트의 압력 및 압력전달 매개체(Pressure-transmitting medium, PTM)에 따른 결정구조의 변화를 알아보기위한 목적으로 실험을 진행하였다. 천연 제올라이트 멜리노이트(Merlinoite, (K,Ca0.5,Ba0.5,Na)10 Al10Si22O64× 22H2O)와 동일한 골격구조를 가지는 합성 물질인 제올라이트-W(K6.4Al6.5Si25.8O64× 15.3H2O, K-MER)의 압력 하 압력전달 매개체에 따른 선형 압축률 및 체적 탄성률의 변화에 대한 X선 회절연구를 진행하였다. 합성된 시료는 정방정계에 속하는 I4/mmm 공간군으로 확인되었다. 압력전달 매개체 중 제올라이트의 동공 및 채널을 투과할 수 있는 투과 매개체(Penetrating medium)로 물, 이산화탄소를, 비투과 매개체로 실리콘 오일(Silicone-oil)을 각각 사용하였으며, 상압에서 최대 3 GPa까지 약 0.5 GPa 간격으로 가압하였다. 다이아몬드 고압유도장치 및 방사광 X-선원을 이용하여 압력 하 시료의 분말 회절을 측정하였고, 르바일(Le-Bail)법 및 버치-머내한 상태방정식을 이용하여 격자상수 및 체적탄성률의 변화를 관찰하였다. 모든 실험에서 c축의 선형압축률(𝛽c)은 0.006(1) GPa-1또는 0.007(1) GPa-1의 값을 보여 압력 증가 대비 유사한 압축률을 보인 반면, a축의 압축률(𝛽a)은 실리콘 오일 실험에서 0.013(1) GPa-1을 보여 물과 이산화탄소 (𝛽a=0.006(1) GPa-1) 실험결과에 비해 압축률이 약 두 배정도 큰 것으로 확인할 수 있었다. 체적탄성률(K0)은 물, 이산화탄소, 실리콘 오일의 실험에서 각각 50(3) GPa, 52(3) GPa, 29(2) GPa로 도출되었다. 압력 증가에 따른 ac면의 orthorhombicity를 측정한 결과 물과 이산화탄소 실험에서는 0.350~0.353의 비교적 일정한 값을 보였으나, 실리콘 오일의 실험에서는 y = -0.005(1)x + 0.351(1)의 함수를 만족시키며 압력이 증가할수록 값이 점차 작아졌다.

This study aimed to fundamentally understand structural changes of zeolite under pressure and in the presence of different pressure-transmitting media (PTM) for application studies such as immobilization of heavy metal cation or CO2 storage using pressure. High-pressure X-ray powder diffraction study was conducted on the zeolite-W (K6.4Al6.5Si25.8O64× 15.3H2O, K-MER) to understand linear compressibility and the bulk moduli in different PTM conditions. Zeolite-w is a synthetic material having the same framework as natural zeolite merlinoite ((K, Ca0.5, Ba0.5, Na)10 Al10Si22O64× 22H2O). The space group of the sample was identified as I4/mmm belonging to the tetragonal crystal system. Water, carbon dioxide, and silicone-oil were used as pressure-transmitting media. The mixture of sample and each PTM was mounted in a diamond anvil cell (DAC) and then pressurized up to 3 GPa with an increment of ca. 0.5 GPa. Pressure-induced changes of powder diffraction patterns were measured using a synchrotron X-ray light source. Lattice constants, and bulk moduli were calculated using the Le-Bail method and the Birch-Murnaghan equation. In all PTM conditions, linear compressibility of c-axis (𝛽c) was 0.006(1) GPa-1 or 0.007(1) GPa-1. On the other hand, the linear compressibility of a(b)-axis (𝛽a) was 0.013(1) GPa-1 in silicone-oil run, which is twice more compressible than the a(b)-axis in water and carbon dioxide runs, 𝛽a = 0.006(1) GPa-1. The bulk moduli were measured as 50(3) GPa, 52(3) GPa, and 29(2) GPa in water, carbon dioxide, and silicone-oil run, respectively. The orthorhombicities of ac-plane in the water, and carbon dioxide runs were comparatively constant, near 0.350~0.353, whereas the value decreased abruptly in the silicone-oil run following formula, y = -0.005(1)x + 0.351(1) by non-penetrating pressure fluid condition.

키워드

과제정보

본 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었다. 방사광가속기를 이용한 고압 회절실험은 포항가속기연구소의 지원으로 수행되었다.

참고문헌

  1. A. Barrett, P., Valencia, S. and A. Camblor, M., 1998, Synthesis of a merlinoite-type zeolite with an enhanced Si/Al ratio via pore filling with tetraethylammonium cations. Journal of Materials Chemistry, 8, 2263-2268. https://doi.org/10.1039/a803801e
  2. Angel, R.J., Alvaro, M. and Gonzalez-Platas, J., 2014, Eos-Fit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie - Crystalline Materials, 229, 405-419. https://doi.org/10.1515/zkri-2013-1711
  3. Bieniok, A., Bornholdt, K., Brendel, U. and Baur, W.H., 1996, Synthesis and crystal structure of zeolite-W, resembling the mineral merlinoite. Journal of Materials Chemistry, 6, 271-275. https://doi.org/10.1039/JM9960600271
  4. Birch, F., 1947, Finite elastic strain of cubic crystals. Physical Review, 71, 809-824. https://doi.org/10.1103/PhysRev.71.809
  5. C. Quirin, J., Yuen, L. and I. Zones, S., 1997, Merlinoite synthesis studies with and without organocations. Journal of Materials Chemistry, 7, 2489-2494. https://doi.org/10.1039/a704765g
  6. Choi, H.J., Jo, D., Min, J.G. and Hong, S.B., 2021, The origin of selective adsorption of CO2 on merlinoite zeolites. Angewandte Chemie International Edition, 60, 4307-4314. https://doi.org/10.1002/anie.202012953
  7. Donahoe, R., Liou, J. and Guldman, S., 1984, Synthesis and characterization of zeolites in the system Na2O-K2O-Al2O3-SiO2-H2O. Clays and Clay Minerals, 32, 433-443. https://doi.org/10.1346/CCMN.1984.0320601
  8. Georgieva, V.M., Bruce, E.L., Verbraeken, M.C., Scott, A.R., Casteel, W.J., Brandani, S. and Wright, P.A., 2019, Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite. Journal of the American Chemical Society, 141, 12744-12759. https://doi.org/10.1021/jacs.9b05539
  9. Im, J., Yim, N., Kim, J., Vogt, T. and Lee, Y., 2016, High-pressure chemistry of a zeolitic imidazolate framework compound in the presence of different fluids. Journal of the American Chemical Society, 138, 11477-11480. https://doi.org/10.1021/jacs.6b07374
  10. Itabashi, K., Ikeda, T., Matsumoto, A., Kamioka, K., Kato, M. and Tsutsumi, K., 2008, Syntheses and structural properties of four Rb-aluminosilicate zeolites. Microporous and Mesoporous Materials, 114, 495-506. https://doi.org/10.1016/j.micromeso.2008.01.037
  11. Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  12. Mao, H.K., Xu, J. and Bell, P.M., 1986, Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research-Solid Earth and Planets, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  13. Munthali, M.W., Johan, E., Aono, H. and Matsue, N., 2015, Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramic Societies, 3, 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  14. Murnaghan, F.D., 1944, The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30, 244-247. https://doi.org/10.1073/pnas.30.9.244
  15. Passaglia, P. and Rinaldi, R., 1976, Merlinoite, a new mineral of the zeolite group. Neues Jahrbuch fur Mineralogie - Monatshefte, 355-364.
  16. Prescher, C. and Prakapenka, V.B., 2015, Dioptas: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35, 223-230. https://doi.org/10.1080/08957959.2015.1059835
  17. Seoung, D., Kim, H., Kim, P., Song, C., Lee, S., Chae, S., Lee, S., Lee, H. and Lee, Y., 2020, Structural characterization and comparison of monovalent cation-exchanged zeoliteW. Materials, 13, 3684-3693. https://doi.org/10.3390/ma13173684
  18. Sherman, J.D., 1977, Identification and characterization of zeolites synthesized in the K2O-Al2O3-SiO2-H2O system. Molecular Sieves - II, 40, 30-42. https://doi.org/10.1021/bk-1977-0040.ch003
  19. Smith, G.I., Barczak, V.J., Moulton, G.F. and Liddicoat, J.C., 1983, Core KM-3, a surface-to-bedrock record of late Cenozoic sedimentation in searles valley, California. Professional Paper, 1256, 1-29.
  20. Tazaki, K. and Fyfe, W.S., 1992, 6. Diagenetic and hydrothermal mineral alteration observed in Izu-Bonin deep-sea sediments, Leg 126. Proceedings of the Ocean Drilling Program, Scientific Results, 126, 101-112.
  21. Toby, B.H., 2001, EXPGUI, A graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210-213. https://doi.org/10.1107/s0021889801002242
  22. Vitali, F., Blanc, G. and Larque, P., 1995, Zeolite distribution in volcaniclastic deep-sea sediments from the Tonga trench margin (SW Pacific). Clays and Clay Minerals, 43, 92-104. https://doi.org/10.1346/CCMN.1995.0430111