DOI QR코드

DOI QR Code

시간-보간법을 활용한 5-bit FLASH ADC

5-bit FLASH A/D Converter Employing Time-interpolation Technique

  • 남재원 (서울과학기술대학교 전자IT미디어공학과) ;
  • 조영균 (공주대학교 전기전자제어공학부)
  • Nam, Jae-Won (Department of Electronic and IT Media Engineering, SeoulTech) ;
  • Cho, Young-Kyun (Division of Electrical, Electronic and Control Engineering, Kongju National University)
  • 투고 : 2021.07.20
  • 심사 : 2021.09.20
  • 발행 : 2021.09.28

초록

본 연구는 시간-보간법을 적용한 FLASH analog-to-digital converter (ADC)에 관한 것이다. 시간-보간법은 기존의 FLASH ADC에서 요구되는 전압영역 비교기의 개수를 줄일 수 있으며 이 따른 전력 소모 및 칩 면적의 절약을 기대할 수 있다. 본 연구에서는 5-bit, 즉 31개의 양자화 레벨을 갖는 ADC를 설계 및 구현하였으며, 16개의 양자화 레벨은 기존의 전압영역 비교기 방식을 유지하고, 나머지 15개의 양자화 레벨은 시간영역 비교기를 통하여 처리되도록 구성하여, 기존 5-bit FLASH ADC 대비 전압영역 비교기의 숫자를 48.4% 줄일 수 있었다. 시제품은 14 nm Fin Field-effect transistor (FinFET) 공정으로 제작되었으며 구현면적은 0.0024 mm2, 전력소모는 0.8 V 전원전압에서 0.82 mW로 측정되었으며, 400 MS/s의 변환속도 21 MHz 정현파 입력에 대하여 ADC는 28.03 dB의 신호-대-잡음비 (SNDR), 즉 4.36 유효비트(ENOB)의 성능을 보였다.

A time-interpolation technique has been applied to the conventional FLASH analog-to-digital converter (ADC) to increase a number of quantization level, thus it reduces not only a power dissipation, but also minimize an active chip area. In this work, we demonstrated 5-bit ADC which has 31 quantization levels consisting of 16 conventional voltage-mode comparators and 15 time-mode comparators. As a result, we have achieved about 48.4% voltage-mode comparator reductions. The ADC is fabricated in a 14nm fin Field-effect transistor (FinFET) process with an active die area of 0.0024 mm2 while consuming 0.82 mW through a 0.8 V supply. At 400-MS/s conversion rate, the ADC performs 28.03 dB SNDR (4.36 ENOB) at 21MHz input frequency.

키워드

과제정보

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology).

참고문헌

  1. Y.-K. Cho et al. (2017). A low-power continuoustime delta-sigma modulator using a resonant single op-amp third-order loop filter, IEEE Trans. Circuits Syst. II, Exp. Briefs, 854-858. DOI : 10.1109/TCSII.2017.2729595
  2. Y.-K. Cho et al. (2011). A 10-bit 30-MS/s successive approximation register analog-todigital converter for low-power sub-sampling applications, Elsevier Microelectronics Journal, 1335-1342. DOI : 10.1016/j.mejo.2011.09.006
  3. Y.-D. Jeon et al. (2012). A dual-channel pipelined ADC with sub-ADC based on flash-SAR architecture, IEEE Trans. Circuits Syst. II, Exp. Briefs, 741-745. DOI : 10.1109/TCSII.2012.2222837
  4. P. Scholtens & M. Vertregt (2002). A 6 bit 1.6 GS/s flash ADC in 0.18 ㎛ CMOS using averaging termination, IEEE ISSCC Dig. Tech. Papers, 168-457. DOI :10.1109/JSSC.2002.804334
  5. X. Jiang et al. (2003). A 2 GS/s 6b ADC in 0.18 ㎛ CMOS, IEEE ISSCC Dig. Tech. Papers, 322-497. DOI :10.1109/ISSCC.2003.1234317
  6. Z. Cao, S. Yan & Y. Li (2008). A 32 mW 1.25 GS/s 6 b 2 b/step SAR ADC in 0.13 ㎛ CMOS, ISSCC Dig. Tech. Papers, 542-543. DOI : 10.1109/ISSCC.2008.4523297
  7. J.-W. Nam et al. (2018). A 12-bit 1.6, 3.2, and 6.4 GS/s 4-b/cycle time-interleaved SAR ADC with dual reference shifting and interpolation, IEEE J. Solid-State Circuits, 1765 - 1779. DOI : 10.1109/JSSC.2018.2808244
  8. H. Wei et al. (2012). An 8-b 400-MS/s 2-b-per-cycle SAR ADC with resistive DAC, IEEE J. Solid-State Circuits, 2763-2772. DOI :.10.1109/JSSC.2012.2214181
  9. H. J. M. Veendrick (1980). The behavior of flip-flops used as synchronizers and prediction of their failure rate, IEEE J. Solid-State Circuits, 169-176. DOI : 10.1109/JSSC.1980.1051359
  10. J. W. Nam & M. W. Chen. (2020). A 12.8-Gbaud ADC-based Wireline Receiver with Embedded IIR Equalizer, IEEE J. Solid-State Circuits, 557-566. DOI : 10.1109/JSSC.2019.2956395