DOI QR코드

DOI QR Code

산말의 항산화 및 멜라닌 생성 억제활성

Characterization of Antioxidant, Melanogenic activity of Fuctions by Sanmal and D-Mannuronic Acid

  • 남영선 (건국대학교 생물공학과) ;
  • 강상모 (건국대학교 생물공학과)
  • Nam, Young-Sun (Division of Biological Engineering, Konkuk University) ;
  • Kang, Sang-Mo (Division of Biological Engineering, Konkuk University)
  • 투고 : 2021.06.26
  • 심사 : 2021.09.20
  • 발행 : 2021.09.28

초록

본 연구는 산말 3종류 Desmarestia dudresnayi subsp. Tabacoides (담배잎산말), Desmarestia viridis (쇠꼬리산말), Desmarestia ligulate (참산말) 잎 추출물의 항산화 및 항 멜라닌 활성에 대한 기능적 연구를위해 수행하였다. 3종류의 산말 중 담배잎산말 추출물이 2.5 mg / mL의 농도에서 DPPH 및 ABTS 라디칼 소거활성이 각각 68.0 % ± 1.9 % 및 84.6 % ± 1.7 %로 강한 항산화력을 나타냈다. 질소 (NO) 라디칼 소거 활성은 91.6 % ± 1.1 %의 높은 항산화능을 보였다 산말 추출물을 이용한 B16F10세포의 세포독성은 100 ㎍/mL 농도에서 3종의 산말 추출물이 모두 85% 이상의 세포 생존률을 보였고, 100 ㎍ / mL농도에서 담배잎산말 및 쇠꼬리산말이 70% 이상의 멜라닌 억제효과를 보였다. 이러한 내용은 산말이 항산화 및 항멜라닌 활성과 같은 천연 화장품 소재로 사용될 수 있을 것으로 사료된다.

This study investigated the functional study in anti-oxidant and anti-melanin activity by Desmarestia dudresnayi subsp. Tabacoides, Desmarestia viridis, Desmarestia ligulate leaf extracts. The DPPH radical scavenging activity of D. viridis extract showed a high antioxidant activity of 68.0 ± 1.9% at the concentration of 2.5 mg / mL, the ABTS and scavenging activity showed a high antioxidant activity of 84.6 ± 1.7% at the concentration of 2.5 mg / mL, and the NO radical scavenging activity was 2.5. It required a high antioxidant capacity of 91.6 ± 1.1% at mg/mL concentration. In addition, in B16F10 cells, at a concentration of 100 ㎍/mL, D. viridis extract is 35.0 ± 1.7% melanin among, which has the lowest amount of melanin among the three species. With these contents, it seems that there is a possibility that D. viridis could be developed as a cosmetic material. These results D. viridis considered that it can be used as a natural cosmetic material such as anti-oxidant and anti-melanin activity.

키워드

참고문헌

  1. N. F. Santos-Sanchez, R. Salas-Coronado, C. Villanueva-Canongo & B. Hernandez-Carlos. (2019). Antioxidant compounds and their antioxidant mechanism, in Antioxidants. IntechOpen.
  2. K. Iwata. (2016). Differential roles of NOX1/NADPH oxidase derived ROS in cardiovascular disease. Nihon Yakurigaku Zasshi, 147, 12-7. DOI : 10.1161/ATVBAHA.116. 307308
  3. C. D. Ochoa, R. F. Wu ,L. S. Terada. (2018). ROS signaling and ER stress in cardiovascular disease. Molecular Aspects of Medicine, 63, 18-29. DOI : 10.1016/j.mam.2018.03.002
  4. S. Shen et al. (2020). Characterization of ROS Metabolic Equilibrium Reclassifies Pan-Cancer Samples and Guides Pathway Targeting Therapy. Front Oncology, 10, 581197. DOI : 10.3389/fonc. 2020.581197
  5. N. Robledinos-Anton, R. Fernandez-Gines, G. Manda & A. Cuadrado. (2019). Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxidative medicine cellular longevity, 2019, DOI : 10.1155/2019/9372182
  6. C. G. Choi, S. N. Kwak & C. H. Sohn. (2006). Community Structure of Subtitdal Marine Algae at Uljin on theEast Coast of Korea. Algae, 21, 463-470. DOI : 10.4490/algae.2006.21.4.463
  7. S. R. Lee & E. Y. Lee. (2018). Desmarestia japonica subsp. angustifolia (Desmarestiales, Phaeop- hyceae), a new subspecies from Korea. Phytotaxa, 365, 89-95. DOI : 10.11646/ phytotaxa.365.1.4
  8. M. J. Kim, K. W. Yang, W. J. Lee, S. S. Kim, N. H. Lee & C. G. Hyun. (2013). Inhibitory effect of Ulva fasciata and Desmarestia viridis on the production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 cells. Journal of Applied Pharmaceutical Science, 3, 1. DOI : 10.7324/JAPS.2013.3901
  9. S. B. Lee, J. Y. Lee, D. G. Song, C. H. Pan, C. W. Nho, M. C. Kim, E. H. Lee, S. H. Jung, H. S. Kim & Y. S. Kim. (2008). Cancer chemopreventive effects of Korean seaweed extracts. Food Science Biotechnology, 17, 613-622.
  10. E. O'Connell, C. Piggott & M. Tuohy. (2011). Purification of exo-1, 3-beta-glucanase, a new extracellular glucanolytic enzyme from Talaromyces emersonii. Applied microbiology biotechnology, 89, 685-696. DOI : 10.1007/ s00253-010-2883-x
  11. J. H. Kim, H. M. Gang, S. H. Lee, J. Y. Lee & N. Y. Pakr. (2015). Antioxidant and α-glucosidase inhibition activity of seaweed extracts. Korean Journal of Food Preservation, 22(2), 290-296. DOI : 10.11002/kjfp.2015.22.2.290
  12. Y. Wu et al. (2020). Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation. Journal of Cleaner Production, 273, 123065. DOI : 10.1016/j.jclepro.2020.123065
  13. H. O. Boo, S. J. Hwang, C. S. Bae, S. H. Park & W. S. Song. (2011). Antioxidant activity according to each kind of natural plant pigments. Korean Journal of Plant Resources, 24, 105-112. DOI : 10.7732/kjpr.2011.24.1.105.
  14. G. H. An, J. G. Han & J. H. Jo. (2019). Antioxidant activities and β-glucan contents of wild mushrooms in Korea. Journal of mushrooms, 17(3), 144-151. DOI : 10.14480/JM.2019.17. 3.144
  15. E. J. Kim, J. Y. Choi, M. R. Yu, M. Y. Kim, S. H. Lee & B. H. Lee. (2012). Total Polyphenols, Total Flavonoid Contents, and Antioxidant Activity of Korean Natural and Medicinal Plants, Korean journal of food science and technology, 44(3), 337-342. DOI : 10.9721/KJFST.2012.44.3.337
  16. S. J. Kim, G. S. Lee, S. H. Moo, J. B. Park. C. K. Auh, Y. J. Chung, T. K. Ryu & T. K. Lee. (2013). Phenolic Contents and Antioxidant Activities of Six Edible Seaweeds, Journal of the Korea Academia-Industrial cooperation Society, 14(6), 3081-3088. DOI : 10.5762/KAIS.2013.14.6.3081