DOI QR코드

DOI QR Code

Rainfall Interception by and Quantitative Models for Urban Landscape Trees - For Seven Native Species -

도시조경수의 우수차집 효과와 계량모델 - 7개 향토수종을 대상으로 -

  • Park, Hye-Mi (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Jo, Hyun-Kil (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Kim, Jin-Young (Dept. of Ecological Landscape Architecture Design, Kangwon National University)
  • 박혜미 (강원대학교 생태조경디자인학과) ;
  • 조현길 (강원대학교 생태조경디자인학과) ;
  • 김진영 (강원대학교 생태조경디자인학과)
  • Received : 2020.12.15
  • Accepted : 2021.07.12
  • Published : 2021.09.02

Abstract

This study developed quantitative models to estimate the rainfall interception by seven native landscape tree species based on throughfall measurements. The tree species considered in this study were Abies holophylla, Acer palmatum, Ginkgo biloba, Pinus densiflora, Pinus koraiensis, Prunus yedoensis, and Zelkova serrata, which are frequently planted in the Korea. Among these species, 35.8% of the annual precipitation was intercepted by P. koraiensis, 34.1% by A. holophylla, 31.0% by Z. serrata, 27.6% by P. densiflora, 26.9% by G. biloba, 18.6% by A. palmatum, and 18.4% by P. yedoensis. All the quantitative models showed high fitness with r2 values of 0.90-0.99. The annual rainfall interception from a tree with DBH of 20 cm were greatest with Z. serrata (5.1 m3/yr), followed by P. koraiensis (4.1 m3/yr), A. holophylla (3.1 m3/yr), G. biloba (2.8 m3/yr), P. densiflora (2.1 m3/yr), P. yedoensis (1.9 m3/yr), and A. palmatum (1.8 m3/yr) in order. Thus, evergreen tree species or those with a relatively high crown density were more effective in intercepting rainfall. In particular, the annual rainfall interception by Z. serrata was the greatest because its crown area, volume, and density were higher than those of the other species. This study pioneers in quantifying annual rainfall interception for landscape tree species in Korea. The study results can be useful for evaluating rainfall interception by landscape trees in urban greenspace design for governments and corporations.

본 연구는 국내에서 식재빈도가 높은 7개 조경수종을 대상으로 수관의 우수차집비율을 분석하고, 이를 기반으로 수종별 단목의 연간 우수차집량을 유추하는 계량모델을 마련하였다. 연구대상 수종은 느티나무, 단풍나무, 소나무, 왕벚나무, 은행나무, 잣나무, 전나무 등이었다. 수종별 수관의 평균 우수차집비율은 각각 잣나무 35.8%, 전나무 34.1%, 느티나무 31.0%, 소나무 27.6%, 은행나무 26.9%, 단풍나무 18.6%, 왕벚나무 18.4% 등의 순이었다. 계량모델의 r2은 0.90~0.99 범위로서 적합도가 높았다. 수종별 연간 우수차집량은 흉고직경 20cm 기준 느티나무가 5.1m3/주/년으로서 가장 많았고, 이어서 잣나무 4.1m3/주/년, 전나무 3.1m3/주/년, 은행나무 2.8m3/주/년, 소나무 2.1m3/주/년, 왕벚나무 1.9m3/주/년, 단풍나무 1.8m3/주/년 등의 순이었다. 수관폭 4m 기준의 경우에는 잣나무가 5.0m3/주/년으로서 가장 많았고, 이어서 전나무 4.4m3/주/년, 느티나무 4.1m3/주/년, 은행나무 3.3m3/주/년, 소나무 2.9m3/주/년, 단풍나무 2.1m3/주/년, 왕벚나무 1.9m3/주/년 등의 순으로 나타났다. 즉, 도시조경수의 연간 우수차집량은 상록수 또는 수관밀도가 높은 수종이 많은 경향이었다. 본 연구는 도시녹지의 우수차집 효과 관련 연구가 미진한 국내 현실에서, 조경수의 연간 우수차집량을 산정할 수 있는 초석을 새롭게 마련하였다. 이 연구결과는 정부, 지자체, 및 기업에서 시행하는 생태조경 사업과 관련하여 조경수의 우수차집 효과를 평가하는 공공기반기술로서 유용할 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(2017043B10-1919-BB01; 2019151D10-2123-0301)'의 지원에 의하여 이루어진 것임.

References

  1. Bang, K. J. and J. S. Lee(1995) Studies on planting distribution status of landscaping plants in Korea. Journal of the Korean Institute of Landscape Architecture 23(1): 67-94.
  2. Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey(2003) National-scale biomass estimators for United States tree species. Forest Science 49: 12-35.
  3. Jo, H. K.(2020) Development of Model and Technology for Establishment, Management and Evaluation of Urban Forests in Living Zone to Improve Carbon Sequestration Sources and Multi-dimensional Benefits against New Climate Change Regime. Research Report to Korea Forest Service.
  4. Jo, H. K. and D. H. Cho(1998) Annual CO2 uptake by urban popular landscape tree species. Journal of the Korean Institute of Landscape Architecture 26(2): 38-53.
  5. Jo, H. K., H. M. Park, and J. Y. Kim(2019a) Carbon offset service and design guideline of tree planting for multifamily residential sites in Korea. Sustainability 11(13): 3543. https://doi.org/10.3390/su11133543
  6. Jo, H. K., H. M. Park, and J. Y. Kim(2020) Carbon reduction and enhancement for greenspace in institutional lands. Journal of the Korean Institute of Landscape Architecture 48(4): 1-7. https://doi.org/10.9715/KILA.2020.48.4.001
  7. Jo, H. K., J. Y. Kim, and H. M. Park(2013) Carbon storage and uptake by evergreen trees for urban landscape - For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 27(5): 571-578. https://doi.org/10.13047/KJEE.2013.27.5.571
  8. Jo, H. K., J. Y. Kim, and H. M. Park(2014) Carbon reduction effects of urban landscape trees and development of quantitative models - For five native species. Journal of the Korean Institute of Landscape Architecture 42(5): 13-21. https://doi.org/10.9715/KILA.2014.42.5.013
  9. Jo, H. K., J. Y. Kim, and H. M. Park(2019b) Carbon reduction and planning strategies for urban parks in Seoul. Urban Forestry & Urban Greening 41: 48-54. https://doi.org/10.1016/j.ufug.2019.03.009
  10. Jo, H. K., J. Y. Kim, and H. M. Park(2019c) Carbon reduction services of evergreen broadleaved landscape trees for Ilex rotunda and Machilus thunbergii in southern Korea. Journal of Forest and Environmental Science 35(4): 240-247. https://doi.org/10.7747/JFES.2019.35.4.240
  11. Jo, H. K., K. E. Lee, Y. H. Yun, and O. H. Seo(1998a) Land use and greenspace structure in several cities of Kangwon province. Journal of the Korean Institute of Landscape Architecture 25(4): 171-183.
  12. Jo, H. K., K. J. Lee, and J. O. Kwon(1998b) Land use and greenspace structure in Seoul - case of Kangnam-gu and Junglang-gu. Korean Journal of Environment and Ecology 12(1): 30-41.
  13. Jo, H. K., S. H. Kil, H. M. Park, and J. Y. Kim(2019d) Carbon reduction by and quantitative models for landscape tree species in southern region- for Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia. Journal of the Korean Institute of Landscape Architecture 47(3): 31-38. https://doi.org/10.9715/KILA.2019.47.3.031
  14. Jo, H. K. and T. W. Ahn(2006) Exploring relationships between urban tree plantings and microclimate amelioration. Journal of the Korean Institute of Landscape Architecture 34(5): 70-75.
  15. Jo, H. K. and T. W. Ahn(2012) Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture 40(5): 160-168. https://doi.org/10.9715/KILA.2012.40.5.160
  16. Jung, M. H., D. K. Lee, and T. W. Um(2007) Differences of nutrient input by throughfall, stemflow and litterfall between deciduous forest and Larix kaempferi plantation in Mt. Joonwang, Kangwon-do. Korean Journal of Soil Science and Fertilizer 40(2): 136-144.
  17. KFRI(Korea Forest Research Institute)(2014) Carbon Emission Factors and Biomass Allometric Equations by Species in Korea. Research Report.
  18. KFRI(Korea Forest Research Institute)(2016) A Study on Evaluation of Forest Multi-Functions. Seoul.
  19. Kim, K. H., Y. H. Jeong, C. G. Jeong, J. H. Jun, and J. Y. Yoo(2004) Effects of thinning and pruning on canopy storage capacity, net rainfall and interception loss in Pinus koraiensis and Abies holophylla plots. Journal of Korean Society of Forest Science 93(7): 453-463.
  20. Kim, K. H., J. H. Jun, J. Y. Yoo, and Y. H. Jeong(2005) Throughfall, stemflow and interception loss of the natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young mixed forest in Yangju, Gyeonggido(I)-with a special reference on the results of measurement. Journal of Korean Society of Forest Science 94(6): 488-495.
  21. KMA(Korea Meteorological Administration)(2015) 2015 Annual Climate Report. Seoul.
  22. KMA(Korea Meteorological Administration)(2016) 2016 Annual Climate Report. Seoul.
  23. KMA(Korea Meteorological Administration)(2017) 2017 Annual Climate Report. Seoul.
  24. KMA(Korea Meteorological Administration)(2018) 2018 Annual Climate Report. Seoul.
  25. KMA(Korea Meteorological Administration)(2019) 2019 Annual Climate Report. Seoul.
  26. Miller, R. W.(1997) Urban Forestry: Planning and Managing Urban Greenspaces. New Jersey: Prentice Hall.
  27. MOIS(Ministry of the Interior and Safety)(2019) 2018 Statistical Yearbook of Natural Disaster. Sejong.
  28. Nowak, D. J.(1994) Atmospheric carbon dioxide reduction by Chicago's urban forest. In E. G. McPherson, D. J. Nowak, and R. A. Rowntree, eds., Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station. pp. 83-94.
  29. Nowak, D. J., R. E. Hoehn, D. E. Crane, J. C. Stevens, J. T. Walton, and J. Bond(2008) A ground-based method of assessing urban forest structure and ecosystem services. Arboriculture and Urban Forestry 34(6): 347-358. https://doi.org/10.48044/jauf.2008.048
  30. Park, E. J. and K. Y. Kang(2010) Estimation of C storage and annual CO2 uptake by street trees in Gyeonggi-do. Korean Journal of Environment and Ecology 24(5): 591-600.
  31. Park, I. H. and S. M. Lee(1990) Biomass and net production of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forestry Society 79(2): 196-204.
  32. Whittaker, R. H. and P. L. Marks(1975) Methods of assessing terrestrial productivity. In H. Lieth and R. H. Whittaker, eds., Primary Productivity of the Biosphere. New York: Springer-Verlag. pp. 55-118.
  33. Woo, B. M.(1993) Influences of forest environment on the water yield from small forested watersheds. Journal of Korean Society of Forest Science 82(3): 283-291.
  34. Xiao, Q. and E. G. McPherson(2002) Rainfall interception by Santa Monica's municipal urban forest. Urban Ecosystem 6: 291-302. https://doi.org/10.1023/B:UECO.0000004828.05143.67
  35. Xiao, Q. and E. G. McPherson(2011) Rainfall interception of three trees in Oakland, California. Urban Ecosystem 14: 755-769. https://doi.org/10.1007/s11252-011-0192-5
  36. Xiao, Q., E. G. McPherson, J. R. Simpson, and S. L. Ustin(1998) Rainfall interception by Sacramento's urban forest. Journal of Arboriculture 24(4): 235-244.
  37. Zianis, D., P. Muukkonen, R. Makipaa, and M. Mencuccini(2005) Biomass and Stem Volume Equations for Tree Species in Europe. Research Report to Finnish Society of Forest Science, Finnish Forest Research Institute.
  38. https://www.kwater.or.