DOI QR코드

DOI QR Code

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Lee, Keun Woo (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Lee, Seung-Hoon (Department of Life Science, Yong In University) ;
  • Byun, Hyun Jung (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University) ;
  • Kim, Boh-Ram (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Lee, Chang Hoon (BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University)
  • Received : 2021.07.19
  • Accepted : 2021.08.03
  • Published : 2021.09.01

Abstract

The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

Keywords

Acknowledgement

This study was partially supported by a grant from the National Cancer Center (NCC-0810410-3), BK21 FOUR program, the Basic Science Research Program, through the National Research Foundation (NRF) of Korea (NRF-2020R1A2C3004973, NRF-2018R1A5A2023127, NRF-2020M3E5E2038356), and Global PhD. Fellowship through the NRF of Korea (NRF-2018H1A2A1061990).

References

  1. Bamberger, E. S. and Perrett, C. W. (2002) Angiogenesis in epithelian ovarian cancer. Mol. Pathol. 55, 348-359. https://doi.org/10.1136/mp.55.6.348
  2. Bao, J. J., Le, X. F., Wang, R. Y., Yuan, J., Wang, L., Atkinson, E. N., LaPushin, R., Andreeff, M., Fang, B., Yu, Y. and Bast, R. C., Jr. (2002) Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspaseindependent calpain-dependent pathway. Cancer Res. 62, 7264-7272.
  3. Birner, P., Schindl, M., Obermair, A., Breitenecker, G. and Oberhuber, G. (2001) Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin. Cancer Res. 7, 1661-1668.
  4. Byrne, A. M., Bouchier-Hayes, D. J. and Harmey, J. H. (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9, 777-794. https://doi.org/10.1111/j.1582-4934.2005.tb00379.x
  5. Conteduca, V., Kopf, B., Burgio, S. L., Bianchi, E., Amadori, D. and De Giorgi, U. (2014) The emerging role of anti-angiogenic therapy in ovarian cancer (review). Int. J. Oncol. 44, 1417-1424. https://doi.org/10.3892/ijo.2014.2334
  6. Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M. and Hagler, A. T. (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductasetrimethoprim, a drug-receptor system. Proteins 4, 31-47. https://doi.org/10.1002/prot.340040106
  7. Ferrara, N. (2002) VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795-803. https://doi.org/10.1038/nrc909
  8. Gasper, R., Sot, B. and Wittinghofer, A. (2010) GTPase activity of DiRas proteins is stimulated by Rap1GAP proteins. Small GTPases 1, 133-141. https://doi.org/10.4161/sgtp.1.3.14742
  9. Guo, B. Q. and Lu, W. Q. (2018) The prognostic significance of high/positive expression of tissue VEGF in ovarian cancer. Oncotarget 9, 30552-30560. https://doi.org/10.18632/oncotarget.25702
  10. Hicklin, D. J. and Ellis, L. M. (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-1027. https://doi.org/10.1200/JCO.2005.06.081
  11. Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K., Yoshioka, Y., Koshiyama, M. and Konishi, I. (2017) Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin. Cancer Res. 23, 587-599. https://doi.org/10.1158/1078-0432.CCR-16-0387
  12. Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H. and Shu, Y. (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157. https://doi.org/10.1186/s12943-019-1089-9
  13. Kang, S., Dong, S. M., Kim, B. R., Park, M. S., Trink, B., Byun, H. J. and Rho, S. B. (2012) Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 989-997. https://doi.org/10.1007/s10495-012-0717-2
  14. Kim, B. R., Seo, S. H., Park, M. S., Lee, S. H., Kwon, Y. and Rho, S. B. (2015) sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1alpha signaling pathways. Oncotarget 6, 31830-31843. https://doi.org/10.18632/oncotarget.5570
  15. Lheureux, S., Braunstein, M. and Oza, A. M. (2019) Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 69, 280-304.
  16. Li, T., Kang, G., Wang, T. and Huang, H. (2018) Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol. Lett. 16, 687-702.
  17. Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G. B., Liao, W. S. and Bast, R. C., Jr. (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917-3929. https://doi.org/10.1172/JCI35512
  18. Lu, Z., Yang, H., Sutton, M. N., Yang, M., Clarke, C. H., Liao, W. S. and Bast, R. C., Jr. (2014) ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ. 21, 1275-1289. https://doi.org/10.1038/cdd.2014.48
  19. Lugano, R., Ramachandran, M. and Dimberg, A. (2020) Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77, 1745-1770. https://doi.org/10.1007/s00018-019-03351-7
  20. Luo, R. Z., Fang, X., Marquez, R., Liu, S. Y., Mills, G. B., Liao, W. S., Yu, Y. and Bast, R. C. (2003) ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene 22, 2897-2909. https://doi.org/10.1038/sj.onc.1206380
  21. Maharjan, S., Park, B. K., Lee, S. I., Lim, Y., Lee, K., Lee, Y. and Kwon, H. J. (2019) Gomisin G suppresses the growth of colon cancer cells by attenuation of AKT phosphorylation and arrest of cell cycle progression. Biomol. Ther. (Seoul) 27, 210-215. https://doi.org/10.4062/biomolther.2018.054
  22. Majmundar, A. J., Wong, W. J. and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294-309. https://doi.org/10.1016/j.molcel.2010.09.022
  23. Mao, W., Peters, H. L., Sutton, M. N., Orozco, A. F., Pang, L., Yang, H., Lu, Z. and Bast, R. C., Jr. (2019) The role of vascular endothelial growth factor, interleukin 8, and insulinlike growth factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer xenografts. Cancer 125, 1267-1280. https://doi.org/10.1002/cncr.31935
  24. Masoud, G. N. and Li, W. (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007
  25. Meadows, K. N., Bryant, P. and Pumiglia, K. (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 276, 49289-49298. https://doi.org/10.1074/jbc.M108069200
  26. Nishimoto, A., Yu, Y., Lu, Z., Mao, X., Ren, Z., Watowich, S. S., Mills, G. B., Liao, W. S., Chen, X., Bast, R. C., Jr. and Luo, R. Z. (2005) A Ras homologue member I directly inhibits signal transducers and activators of transcription 3 translocation and activity in human breast and ovarian cancer cells. Cancer Res. 65, 6701-6710. https://doi.org/10.1158/0008-5472.CAN-05-0130
  27. Plate, K. H., Breier, G., Weich, H. A. and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845-848. https://doi.org/10.1038/359845a0
  28. Rankin, E. B. and Giaccia, A. J. (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15, 678-685. https://doi.org/10.1038/cdd.2008.21
  29. Rho, S. B., Kim, M. J., Lee, J. S., Seol, W., Motegi, H., Kim, S. and Shiba, K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc. Natl. Acad. Sci. U.S.A. 96, 4488-4493. https://doi.org/10.1073/pnas.96.8.4488
  30. Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133. https://doi.org/10.1073/pnas.93.19.10128
  31. Rho, S. B., Lee, S. H., Byun, H. J., Kim, B. R. and Lee, C. H. (2020) IRF-1 inhibits angiogenic activity of HPV16 E6 oncoprotein in cervical cancer. Int. J. Mol. Sci. 21, 7622. https://doi.org/10.3390/ijms21207622
  32. Rho, S. B., Song, Y. J., Lim, M. C., Lee, S. H., Kim, B. R. and Park, S. Y. (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEGFR-2. Cell. Signal. 24, 131-139. https://doi.org/10.1016/j.cellsig.2011.08.013
  33. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386, 671-674. https://doi.org/10.1038/386671a0
  34. Shen, W., Li, H., Liu, L. and Cheng, J. (2017) Expression levels of PTEN, HIF-1alpha, and VEGF as prognostic factors in ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 21, 2596-2603.
  35. Shi, R., Liao, C. and Zhang, Q. (2021) Hypoxia-driven effects in cancer: characterization, mechanisms, and therapeutic implications. Cells 10, 678. https://doi.org/10.3390/cells10030678
  36. Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., Lin, Y. G., Merritt, W. M., Thaker, P. H., Kamat, A. A., Han, L. Y., Tonra, J. R., Coleman, R. L., Ellis, L. M. and Sood, A. K. (2009) Functional significance of VEGFR-2 on ovarian cancer cells. Int. J. Cancer 124, 1045-1053. https://doi.org/10.1002/ijc.24028
  37. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  38. Sutton, M. N., Lu, Z., Li, Y. C., Zhou, Y., Huang, T., Reger, A. S., Hurwitz, A. M., Palzkill, T., Logsdon, C., Liang, X., Gray, J. W., Nan, X., Hancock, J., Wahl, G. M. and Bast, R. C., Jr. (2019) DIRAS3 (ARHI) blocks RAS/MAPK signaling by binding directly to RAS and disrupting RAS clusters. Cell Rep. 29, 3448-3459.e6. https://doi.org/10.1016/j.celrep.2019.11.045
  39. Tuninetti, V., Di Napoli, M., Ghisoni, E., Maggiorotto, F., Robella, M., Scotto, G., Giannone, G., Turinetto, M., Siatis, D., Ponzone, R., Vaira, M., De Simone, M., Scaffa, C., Pignata, S., Greggi, S., Di Maio, M. and Valabrega, G. (2020) cytoreductive surgery for heavily pre-treated, platinum-resistant epithelial ovarian carcinoma: a two-center retrospective experience. Cancers (Basel) 12, 2239. https://doi.org/10.3390/cancers12082239
  40. Wang, X., Bove, A. M., Simone, G. and Ma, B. (2020) Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol. 8, 599281. https://doi.org/10.3389/fcell.2020.599281
  41. Wigerup, C., Pahlman, S. and Bexell, D. (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152-169. https://doi.org/10.1016/j.pharmthera.2016.04.009
  42. Yu, L., Kim, H. J., Park, M. K., Byun, H. J., Kim, E. J., Kim, B., Nguyen, M. T., Kim, J. H., Kang, G. J., Lee, H., Kim, S. Y., Rho, S. B. and Lee, C. H. (2021) Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem. Pharmacol. 183, 114339. https://doi.org/10.1016/j.bcp.2020.114339
  43. Yu, Y., Xu, F., Peng, H., Fang, X., Zhao, S., Li, Y., Cuevas, B., Kuo, W. L., Gray, J. W., Siciliano, M., Mills, G. B. and Bast, R. C., Jr. (1999) NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl. Acad. Sci. U.S.A. 96, 214-219. https://doi.org/10.1073/pnas.96.1.214
  44. Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simons, J. W. and Semenza, G. L. (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88, 2606-2618. https://doi.org/10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W
  45. Zhong, C., Shu, M., Ye, J., Wang, X., Chen, X., Liu, Z., Zhao, W., Zhao, B., Zheng, Z., Yin, Z., Gao, M., Zhao, H., Wang, K. and Zhao, S. (2019) Oncogenic Ras is downregulated by ARHI and induces autophagy by Ras/AKT/mTOR pathway in glioblastoma. BMC Cancer 19, 441. https://doi.org/10.1186/s12885-019-5643-z

Cited by

  1. Resolvin D1 Suppresses H2O2-Induced Senescence in Fibroblasts by Inducing Autophagy through the miR-1299/ARG2/ARL1 Axis vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121924