DOI QR코드

DOI QR Code

Change in Cationic Amino Acid Transport System and Effect of Lysine Pretreatment on Inflammatory State in Amyotrophic Lateral Sclerosis Cell Model

  • Latif, Sana (College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University) ;
  • Kang, Young-Sook (College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University)
  • Received : 2021.02.19
  • Accepted : 2021.04.02
  • Published : 2021.09.01

Abstract

Amyotrophic lateral sclerosis (ALS) is a lethal neurological disorder characterized by the deterioration of motor neurons. The aim of this study was to investigate alteration of cationic amino acid transporter (CAT-1) activity in the transport of lysine and the pretreatment effect of lysine on pro-inflammatory states in an amyotrophic lateral sclerosis cell line. The mRNA expression of cationic amino acid transporter 1 was lower in NSC-34/hSOD1G93A (MT) than the control cell line (WT), lysine transport is mediated by CAT-1 in NSC-34 cell lines. The uptake of [3H]L-lysine was Na+-independent, voltage-sensitive, and strongly inhibited by inhibitors and substrates of cationic amino acid transporter 1 (system y+). The transport process involved two saturable processes in both cell lines. In the MT cell line, at a high-affinity site, the affinity was 9.4-fold higher and capacity 24-fold lower than that in the WT; at a low-affinity site, the capacity was 2.3-fold lower than that in the WT cell line. Donepezil and verapamil competitively inhibited [3H]L-lysine uptake in the NSC-34 cell lines. Pretreatment with pro-inflammatory cytokines decreased the uptake of [3H]L-lysine and mRNA expression levels in both cell lines; however, the addition of L-lysine restored the transport activity in the MT cell lines. L-Lysine exhibited neuroprotective effects against pro-inflammatory states in the ALS disease model cell lines. In conclusion, studying the alteration in the expression of transporters and characteristics of lysine transport in ALS can lead to the development of new therapies for neurodegenerative diseases.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A1044048) (YSK).

References

  1. Adachi, Y., Ono, N., Imaizumi, A., Muramatsu, T., Andou, T., Shimodaira, Y., Nagao, K., Kageyama, Y., Mori, M., Noguchi, Y., Hashizume, N. and Nukada, H. (2018) Plasmaamino acid profile in severely frail elderly patients in Japan. Int. J. Gerontol. 12, 290-293. https://doi.org/10.1016/j.ijge.2018.03.003
  2. Ayers, J. I., Fromholt, S. E., O'Neal, V. M., Diamond, J. H. and Borchelt, D. R. (2016) Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol. 131, 103-114. https://doi.org/10.1007/s00401-015-1514-0
  3. Bae, S. Y., Xu Q., Hutchinson, D. and Colton, C. A. (2015) Y+ and y+ L arginine transporters in neuronal cells expressing tyrosine hydroxylase. Biochim. Biophys. Acta 1745, 65-73.
  4. Bahri, S., Curis, E., El Wafi, F. Z., Aussel, C., Chaumeil, J. C., Cynober, L. and Zerrouk, N. (2008) Mechanisms and kinetics of citrulline uptake in a model of human intestinal epithelial cells. Clin. Nutr. 27, 872-880. https://doi.org/10.1016/j.clnu.2008.08.003
  5. Brohawn, D. G., O'Brien, L. C. and Bennett, J. P., Jr. (2016) RNAseq analyses identify tumor necrosis factor-mediated inflammation as a major abnormality in ALS spinal cord. PLoS ONE 11, e0160520. https://doi.org/10.1371/journal.pone.0160520
  6. Cashman, R. N., Durham, H. D., Blusztajn, K. J., Oda, K., Tabira, T., Shaw, T. I., Dahrouge, S. and Antel, P. J. (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev. Dyn. 194, 209-221. https://doi.org/10.1002/aja.1001940306
  7. Cheng, J., Tang, J. C., Pan, M. X., Chen, S. F., Zhao, D., Zhang, Y., Liao, H. B., Zhuang, Y., Lei, R. X., Wang, S., Liu, A. C., Chen, J., Zhang, Z. H., Li, H. T., Wan, Q. and Chen, Q. X. (2020) L-Lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp. Neurol. 327, 113214. https://doi.org/10.1016/j.expneurol.2020.113214
  8. Closs, E. I., Biossel, J. P., Habermerier, A. and Rotmann, A. (2006) Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 213, 67-77. https://doi.org/10.1007/s00232-006-0875-7
  9. Closs, E. I., Simon, A., Vekony, N. and Rotmann, A. (2004) Plasma membrane transporters for arginine. J. Nutr. 134, 2752S-2759S.
  10. Deves, R., Angelo, S. and Chavez, P. (1993) N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J. Physiol. 468, 753-766. https://doi.org/10.1113/jphysiol.1993.sp019799
  11. Deves, R. and Boyd, C. A. (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol. Rev. 78, 487-545. https://doi.org/10.1152/physrev.1998.78.2.487
  12. Furesz, T. C., Moe, A. J. and Smith, C. H. (1991) Two cationic amino acid transport systems in human placental basal plasma membranes. Am. J. Physiol. 261, C246-C252. https://doi.org/10.1152/ajpcell.1991.261.2.C246
  13. Gyawali, A., Gautam, S., Hyeon, S. J., Ryu, H. and Kang, Y. S. (2021) L-citrulline level and transporter activity are altered in experimental models of amyotrophic lateral sclerosis. Mol. Neurobiol. 58, 647-657. https://doi.org/10.1007/s12035-020-02143-6
  14. Gyawali, A. and Kang, Y. S. (2019) Blood-to-retina transport of imperatorin involves the carrier-mediated transporter system at the inner blood-retinal barrier. J. Pharm. Sci. 108, 1619-1626. https://doi.org/10.1016/j.xphs.2018.11.040
  15. Gyawali, A. and Kang, Y. S. (2021a) Pretreatment effect of inflammatory stimuli and characteristics of tryptophan transport on brain capillary endothelial (TR-BBB) and motor neuron like (NSC-34) cell lines. Biomedicines 9, 9. https://doi.org/10.3390/biomedicines9010009
  16. Gyawali, A. and Kang, Y. S. (2021b) Transport alteration of 4-phenyl butyric acid mediated by a sodium- and proton-coupled monocarboxylic acid transporter system in ALS model cell lines (NSC-34) under inflammatory states. J. Pharm. Sci. 110, 1374-1384. https://doi.org/10.1016/j.xphs.2020.10.030
  17. Ilzecka, J., Stelmasiak, Z., Solski, J., Wawrzycki, S. and Szpetnar, M. (2003) Plasma amino acids concentration in amyotrophic lateral sclerosis patients. Amino Acids 25, 69-73. https://doi.org/10.1007/s00726-002-0352-2
  18. Jung, M. K., Kim, K. Y., Lee, N. Y., Kang, Y. S., Hwang, Y. J., Kim, Y., Sung, J. J., Mckee, A., Kowall, N., Lee, J. and Ryu, H. (2013) Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol. Neurobiol. 47, 699-710. https://doi.org/10.1007/s12035-012-8371-9
  19. Kageyama, T., Nakamura, M., Matsuo, A., Yamasaki, Y., Takakura, Y., Hashida, M., Kanai, Y., Naito, M., Tsuruo, T., Minato, N. and Shimohama, S. (2000) The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res. 879, 115-121. https://doi.org/10.1016/S0006-8993(00)02758-X
  20. Kang, Y. S., Lee, K., Lee, N. Y. and Terasaki, T. (2005) Donepezil, tacrine and α-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Arch. Pharm. Res. 28, 443-450. https://doi.org/10.1007/BF02977674
  21. Kim, C. S., Cho, S. H., Chun, H. S., Lee, S. Y., Endou, H., Kanai, Y. and Kim, D. K. (2008) BCH, an inhibitor of system L amino acid transporters, induces apoptosis in cancer cells. Biol. Pharm. Bull. 31, 1096-1100. https://doi.org/10.1248/bpb.31.1096
  22. Lee, J., Hyeon, S. J., Im, H., Ryu, H., Kim, Y. and Ryu, H. (2016) Astrocytes and microglia as non-cell autonomous players in the pathogenesis of ALS. Exp. Neurobiol. 25, 233-240. https://doi.org/10.5607/en.2016.25.5.233
  23. Lee, N. Y. and Kang, Y. S. (2016) In vivo and in vitro evidence for brain uptake of 4-phenylbutyrate by the monocarboxylate transporter 1 (MCT1). Pharm. Res. 33, 1711-1722. https://doi.org/10.1007/s11095-016-1912-6
  24. Lee, N. Y., Kim, Y., Ryu, H. and Kang, Y. S. (2017) The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS). Biochem. Biophys. Res. Commun. 483, 135-141. https://doi.org/10.1016/j.bbrc.2016.12.178
  25. Lee, K. E. and Kang, Y. S. (2018) L-Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc. Res. 120, 29-35. https://doi.org/10.1016/j.mvr.2018.05.010
  26. Mitsuoka, K., Shirasaka, Y., Fukush, I. A., Sato, M., Nakamura, T., Nakanishi, T. and Tamai, I. (2009) Transport characteristics of L-citrul-line in renal apical membrane of proximal tubular cells. Biopharm. Drug Dispos. 30, 126-137. https://doi.org/10.1002/bdd.653
  27. O'Kane, L. R., Vina, J. R., Simpson, I., Zaragoza, R., Mokashi, A. and Hawkins, R. A. (2006) Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. Am. J. Physiol. Endocrinol. Metab. 291, E412-E419. https://doi.org/10.1152/ajpendo.00007.2006
  28. Patten, B. M., Harati, Y., Acosta, L., Jung, S. S. and Felmus, T. M. (1978) Free amino acid levels in amyotrophic lateral sclerosis. Ann. Neurol. 3, 305-309. https://doi.org/10.1002/ana.410030405
  29. Petrov, D., Daura, X. and Zagrovic, B. (2016) Effect of oxidative damage on the stability and dimerization of superoxide dismutase 1. Biophys. J. 110, 1499-1509. https://doi.org/10.1016/j.bpj.2016.02.037
  30. Rasouli, S., Abdolvahabi, A., Croom, C. M., Plewman, D. L., Shi, Y., Ayers, J. I. and Shaw, B. F. (2017) Lysine acylation in superoxide dismutase-1 electrostatically inhibits formation of fibrils with prion-like seeding. J. Biol. Chem. 292, 19366-19380. https://doi.org/10.1074/jbc.M117.805283
  31. Rojas, F., Gonzalez, D., Cortes, N., Ampuero, E., Hernandez, D. E., Fritz, E., Abarzua, S., Martinez, A., Elorza, A. A., Alvarez, A., Court, F. and van Zundert, B. (2015) Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front. Cell. Neurosci. 9, 203. https://doi.org/10.3389/fncel.2015.00203
  32. Rowland, L. P. and Shneider, N. A. (2001) Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688-1700. https://doi.org/10.1056/NEJM200105313442207
  33. Tomi, M., Kitade, N., Hirose, S., Yokota, N., Akanuma, S., Tachikawa, M. and Hosoya, K. (2009) Cationic amino acid transporter 1-mediated L-arginine transport at the inner blood-retinal barrier. J. Neurochem. 111, 716-725. https://doi.org/10.1111/j.1471-4159.2009.06367.x
  34. Ukmar-Godec, T., Hutten, S., Grieshop, M. P., Rezaei-Ghaleh, N., Cima-Omori, M. S., Biernat, J., Mandelkow, E., Soding, J., Dormann, D. and Zweckstetter, M. (2019) Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909. https://doi.org/10.1038/s41467-019-10792-y
  35. Van Winkle, L. J., Campione, A. L. and Farrington, B. H. (1990) Development of system B0,+ and a broad-scope Na(+)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Biochim. Biophys. Acta 1025, 225-233. https://doi.org/10.1016/0005-2736(90)90101-S
  36. Wee, C. Y., Yap, P. T. and Shen, D.; Alzheimer's Disease Neuroimaging Initiative (2013) Prediction of alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 34, 3411-3425. https://doi.org/10.1002/hbm.22156
  37. Zhan, X., Stamova, B., Jin, L. W., DeCarli, C., Phinney, B. and Sharp, F. R. (2016) Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 87, 2324-2332. https://doi.org/10.1212/WNL.0000000000003391
  38. Zhang, X., Chen, S., Lu, K., Wang, F., Deng, J., Xu, Z., Wang, X., Zhou, Q., Le, W. and Zhao, Y. (2019) Verapamil ameliorates motor neuron degeneration and improves lifespan in the SOD1G93A mouse model of ALS by enhancing autophagic flux. Aging Dis. 10, 1159-1173. https://doi.org/10.14336/AD.2019.0228

Cited by

  1. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines vol.10, pp.12, 2021, https://doi.org/10.3390/cells10123554