DOI QR코드

DOI QR Code

Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay

  • Xiao, Bin (Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University) ;
  • Li, Dan-dan (College of Pharmacy, Pusan National University) ;
  • Wang, Ying (College of Pharmacy, Pusan National University) ;
  • Kim, Eun La (College of Pharmacy, Pusan National University) ;
  • Zhao, Na (Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University) ;
  • Jin, Shang-Wu (The Fourth People's Hospital of Ordos) ;
  • Bai, Dong-Hao (The Fourth People's Hospital of Ordos) ;
  • Sun, Li-Dong (The Fourth People's Hospital of Ordos) ;
  • Jung, Jee H. (College of Pharmacy, Pusan National University)
  • Received : 2021.01.11
  • Accepted : 2021.03.31
  • Published : 2021.09.01

Abstract

In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

Keywords

Acknowledgement

This research was supported by a 2-year grant from Pusan National University. We thank Hye Lim Byun and Sunwoo Yu for their sincere assistance in molecular docking calculations.

References

  1. Bagi, Z., Erdei, N., Papp, Z., Edes, I. and Koller, A. (2006) Up-regulation of vascular cyclooxygenase-2 in diabetes mellitus. Pharmacol. Rep. 58, 52-56.
  2. Berger, J. and Moller, D. E. (2002) The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409-435. https://doi.org/10.1146/annurev.med.53.082901.104018
  3. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
  4. Bian, Y. Y., Wang, L. C., Qian, W. W., Lin, J., Jin, J., Peng, H. M. and Weng, X. S. (2018) Role of parecoxib sodium in the multimodal analgesia after total knee arthroplasty: a randomized double-blinded controlled trial. Orthop. Surg. 10, 321-327. https://doi.org/10.1111/os.12410
  5. Camp, H. S., Ren, D. and Leff, T. (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol. Med. 8, 442-447. https://doi.org/10.1016/S1471-4914(02)02396-1
  6. Chao, L., Marcus-Samuels, B., Mason, M. M., Moitra, J., Vinson, C., Arioglu, E., Gavrilova, O. and Reitman, M. L. (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221-1228. https://doi.org/10.1172/JCI11245
  7. Cobb, J. E., Blanchard, S. G., Boswell, E. G., Brown, K. K., Charifson, P. S., Cooper, J. P., Collins, J. L., Dezube, M., Henke, B. R., HullRyde, E. A., Lake, D. H., Lenhard, J. M., Oliver, W., Jr., Oplinger, J., Pentti, M., Parks, D. J., Plunket, K. D. and Tong, W. Q. (1998) N-(2-benzoylphenyl)-l-tyrosine PPARγ agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. J. Med. Chem. 41, 5055-5069. https://doi.org/10.1021/jm980414r
  8. Collins, J. L., Blanchard, S. G., Boswell, G. E., Charifson, P. S., Cobb, J. E., Henke, B. R., Hull-Ryde, E. A., Kazmierski, W. M., Lake, D. H., Leesnitzer, L. M., Lehmann, J., Lenhard, J. M., Orband-Miller, L. A., Gray-Nunez, Y., Parks, D. J., Plunkett, K. D. and Tong, W. Q. (1998) N-(2-benzoylphenyl)-l-tyrosine PPARγ agonists. 2. Structure-activity relationship and optimization of the phenyl alkyl ether moiety. J. Med. Chem. 41, 5037-5054. https://doi.org/10.1021/jm980413z
  9. Elte, J. W. F. and Blickle, J. F. (2007) Thiazolidinediones for the treatment of type 2 diabetes. Eur. J. Intern. Med. 18, 18-25. https://doi.org/10.1016/j.ejim.2006.09.007
  10. Eom, S. H., Liu, S., Su, M., Noh, T. H., Hong, J., Kim, N. D., Chung, H. Y., Yang, M. H. and Jung, J. H. (2016) Synthesis of phthalimide derivatives as potential PPAR-γ ligands. Mar. Drugs 14, 112. https://doi.org/10.3390/md14060112
  11. Evans, R. M., Barish, G. D. and Wang, Y. X. (2004) PPARs and the complex journey to obesity. Nat. Med. 10, 355-361. https://doi.org/10.1038/nm1025
  12. Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M. and Evans, R. M. (1995) 15-Deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803-812. https://doi.org/10.1016/0092-8674(95)90193-0
  13. Fujita, H., Kakei, M., Fujishima, H., Morii, T., Yamada, Y., Qi, Z. and Breyer, M. D. (2007) Effect of selective cyclooxygenase-2 (cox2) inhibitor treatment on glucose-stimulated insulin secretion in c57bl/6 mice. Biochem. Biophys. Res. Commun. 363, 37-43. https://doi.org/10.1016/j.bbrc.2007.08.090
  14. Henke, B. R., Blanchard, S. G., Brackeen, M. F., Brown, K. K., Cobb, J. E., Collins, J. L., Harrington, W. W., Jr., Hashim, M. A., Hull-Ryde, E. A., Kaldor, I., Kliewer, S. A., Lake, D. H., Leesnitzer, L. M., Lehmann, J. M., Lenhard, J. M., Orband-Miller, L. A., Miller, J. F., Mook, R. A., Jr., Noble, S. A., Oliver, W., Jr., Parks, D. J., Plunket, K. D., Szewczyk, J. R. and Willson, T. M. (1998) N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 41, 5020-5036. https://doi.org/10.1021/jm9804127
  15. Higgins, L. S. and Mantzoros, C. S. (2008) The development of INT131 as a selective PPARγ modulator: approach to a safer insulin sensitizer. PPAR Res. 2008, 936906. https://doi.org/10.1155/2008/936906
  16. Huang, S., Hu, H., Cai, Y.-H. and Hua, F. (2019) Effect of parecoxib in the treatment of postoperative cognitive dysfunction: a systematic review and meta-analysis. Medicine 98, e13812. https://doi.org/10.1097/MD.0000000000013812
  17. Hu, Y., Stumpfe, D. and Bajorath, J. (2017) Recent advances in scaffold hopping. J. Med. Chem. 60, 1238-1246. https://doi.org/10.1021/acs.jmedchem.6b01437
  18. Jiang, T., Shi, X., Yan, Z., Wang, X. and Gun, S. (2019) Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp. Ther. Med. 18, 2160-2166.
  19. Khanna-Gupta, A., Abayasekara, N., Levine, M., Sun, H., Virgilio, M., Nia, N., Halene, S., Sportoletti, P., Jeong, J.-Y., Pandolfi, P. P. and Berliner, N. (2012) Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein α activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J. Biol. Chem. 287, 32728-32737. https://doi.org/10.1074/jbc.M112.373274
  20. Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G. and Wahli, W. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 11, 779-791. https://doi.org/10.1210/mend.11.6.0007
  21. Kroker, A. J. and Bruning, J. B. (2015) Review of the structural and dynamic mechanisms of pparγ partial agonism. PPAR Res. 2015, 816856. https://doi.org/10.1155/2015/816856
  22. Leonardini, A., Laviola, L., Perrini, S., Natalicchio, A. and Giorgino, F. (2009) Cross-talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009, 818945. https://doi.org/10.1155/2009/818945
  23. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
  24. Liu, C., Feng, T., Zhu, N., Liu, P., Han, X., Chen, M., Wang, X., Li, N., Li, Y., Xu, Y. and Si, S. (2015) Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci. Rep. 5, 9530. https://doi.org/10.1038/srep09530
  25. Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. and Evans, R. M. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835-839. https://doi.org/10.1016/0092-8674(95)90199-X
  26. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) AutoDock4 and AutoDock-Tools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791. https://doi.org/10.1002/jcc.21256
  27. Motoshima, K., Ishikawa, M., Hashimoto, Y. and Sugita, K. (2011) Peroxisome proliferator-activated receptor agonists with phenethylphenylphthalimide skeleton derived from thalidomide-related liver X receptor antagonists: relationship between absolute configuration and subtype selectivity. Bioorg. Med. Chem. 19, 3156-3172. https://doi.org/10.1016/j.bmc.2011.03.065
  28. Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K. and Milburn, M. V. (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137-143. https://doi.org/10.1038/25931
  29. Petersen, R. K., Christensen, K. B., Assimopoulou, A. N., Frette, X., Papageorgiou, V. P., Kristiansen, K. and Kouskoumvekaki, I. (2011) Pharmacophore-driven identification of PPARγ agonists from natural sources. J. Comput. Aided Mol. Des. 25, 107-116. https://doi.org/10.1007/s10822-010-9398-5
  30. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  31. Sanner, M. F. (1999) Python: a programming language for software integration and development. J. Mol. Graph. Model. 17, 57-61.
  32. Semple, R. K., Chatterjee, V. K. K. and O'Rahilly, S. (2006) PPARγ and human metabolic disease. J. Clin. Invest. 116, 581-589. https://doi.org/10.1172/JCI28003
  33. Smith, U. and Kahn, B. B. (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 280, 465-475. https://doi.org/10.1111/joim.12540
  34. Su, M., Cao, J., Huang, J., Liu, S., Im, D. S., Yoo, J.-W. and Jung, J. H. (2017) The in vitro and in vivo anti-inflammatory effects of a phthalimide PPAR-γ agonist. Mar. Drugs 15, 7. https://doi.org/10.3390/md15010007
  35. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  36. Waku, T., Shiraki, T., Oyama, T. and Morikawa, K. (2009) Atomic structure of mutant PPARγ LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARγ/RXRα function by covalently bound ligands. FEBS Lett. 583, 320-324. https://doi.org/10.1016/j.febslet.2008.12.017
  37. Wang, L., Waltenberger, B., Pferschy-Wenzig, E.-M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M. and Atanasov, A. G. (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol. 92, 73-89. https://doi.org/10.1016/j.bcp.2014.07.018
  38. Wang, Q., Imam, M. U., Yida, Z. and Wang, F. (2017) Peroxisome proliferator-activated receptor gamma (PPARγ) as a target for concurrent management of diabetes and obesity-related cancer. Curr. Pharm. Des. 23, 3677-3688.
  39. Wang, Y., Chen, Z., Li, J. and Shi, J. (2019) Parecoxib improves the cognitive function of POCD rats via attenuating COX-2. Eur. Rev. Med. Pharmacol. Sci. 23, 4971-4979.
  40. Willson, T. M., Lambert, M. H. and Kliewer, S. A. (2001) Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 70, 341-367. https://doi.org/10.1146/annurev.biochem.70.1.341
  41. Younce, C. W., Azfer, A. and Kolattukudy, P. E. (2009) MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor γ. J. Biol. Chem. 284, 27620-27628. https://doi.org/10.1074/jbc.M109.025320

Cited by

  1. Neuroprotective Effect of Cyclo-(L-Pro-L-Phe) Isolated from the Jellyfish-Derived Fungus Aspergillus flavus vol.19, pp.8, 2021, https://doi.org/10.3390/md19080417