DOI QR코드

DOI QR Code

Development of augmented reality based IoT control platform using marker

마커를 이용한 증강현실 기반 사물인터넷 제어 플랫폼 개발

  • Shin, Kwang-Seong (Department of Digital Contents Engineering, Wonkwang University) ;
  • Youm, Sungkwan (Department of Information & Communication Engineering Department, Wonkwang University) ;
  • Park, YoungJoon (Department of Radiologic Technology, Cheju Halla University)
  • Received : 2021.07.20
  • Accepted : 2021.08.06
  • Published : 2021.08.31

Abstract

In order to realize a smart home, a new type of service that converges the two technologies is required as a method to overcome the respective limitations of augmented reality and IoT technologies. Augmented reality recognizes objects and projects augmented content with the recognized objects on the screen. This technology mainly uses image processing methods such as markers as a method for recognizing objects. In this paper, an augmented reality-based IoT control platform using markers was developed. By defining a marker unique to the object, a unique identifier displayed on the camera was distinguished. A smart home system was implemented by calling a controller to control things. The proposed system receives state information of objects through symptom reality and transmits control commands. The proposed platform was verified by manipulating household lights.

스마트 홈을 구현하기 위해 증강현실과 사물인터넷 기술이 가지고 있는 각각의 한계를 극복하기 위한 방법으로 두 가지 기술을 융합하는 새로운 형태의 서비스가 요구되고 있다. 증강현실은 사물을 인식하고 인식된 사물위에 증강된 콘텐츠를 화면에 투영하는데 이 기술은 사물을 인식하기 위한 방법으로 주로 마커와 같은 영상처리 방법을 이용한다. 본 논문에서는 마커를 이용한 증강현실 기반 사물인터넷 제어 플랫폼을 개발하였다. 사물에 고유한 마커를 정의하여 카메라에 보여지는 고유한 식별자를 구분하였다. 사물을 통제하기 위한 제어기를 호출하여 스마트 홈 시스템을 구현하였다. 제안하는 시스템은 증상현실을 통해서 사물의 상태정보를 수신하고 제어 명령어를 전달한다. 제안하는 플랫폼을 가정용 전등 조작하는 방식으로 검증하였다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(2019R1G1A1087290).

References

  1. C. Chang, C. Kuo, J. Chen, and T. Wang, "Design and Implementation of an IoT Access Point for Smart Home," Applied Sciences, vol. 5, pp. 1882-1903, Dec. 2015. https://doi.org/10.3390/app5041882
  2. A. Oh, "Design and Implementation of Smart Home Remote Control Based on Internet of Things Service Platform," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 12, pp. 1563-1570, Dec. 2018. https://doi.org/10.6109/JKIICE.2018.22.12.1563
  3. S. Kim, Y. Kim, C. Lee, D. Lee, and H. Park, "The Way of IoT Management Hub Connection for Convenient IoT Service," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 11, pp. 2656-2664, Nov. 2016. https://doi.org/10.6109/jkiice.2015.19.11.2656
  4. S. Kum, T. Lim, and S. Lee, "Smart home network middleware technology trend," Journal of The Korean Institute of Communication Sciences, vol. 29, no. 9, pp. 44-49, Aug. 2012.
  5. L. Cruz-Piris, D. Rivera, I. Marsa-Maestre, E. d. l. Hoz, and J. R. Velasco, "Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources," Sensors, vol. 18, no. 917, pp. 1-21, Mar. 2018. https://doi.org/10.1109/JSEN.2017.2772700
  6. J. F. Ibanez, J. E. S. Castaneda, and J. C. M. Santos, "An IoT Camera System for the Collection of Data Using QR Code As Object Recognition Algorithm," in Proceeding of 2018 Congreso Internacional de Innovacion y Tendencias en Ingenieria, Bogota, pp. 129-130, 2018.
  7. X. Fan, F. Susan, and S. Li, "Security Analysis of Zigbee," MIT.edu, 2017.
  8. D. Jo and G. J. Kim, "AR Enabled IoT for a Smart and Interactive Environment: A Survey and Future Directions," Sensors, vol. 19, no. 4330, pp. 1-19, Oct. 2019. https://doi.org/10.1109/JSEN.2018.2879233
  9. G. White, C. Cabrera, A. Palade, and S. Clarke, "Augmented Reality in IoT," in Proceeding of The 8th International Workshop on Context-Aware and IoT Services, Hangzhou, 2018.
  10. D. Jo and G. J. Kim, "IoT+AR: pervasive and augmented environments for "Digi-log" shopping experience," Humancentric Computing and Information Sciences, vol. 9, no. 1, 2019.
  11. D. Chaves-Dieguez, A. Pellitero-Rivero, D. Garcia-Coego, F. J. Gonzalez-Castano, P. S. Rodriguez-Hernandez, O. Pineiro-Gomez, F. Gil-Castineira, and E. Costa-Montenegro, "Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers," Sensors, vol. 15, pp. 16083-16104, 2015. https://doi.org/10.3390/s150716083
  12. D. Park, J. Moon, H. Jung, Y. Kim, and S. Hwang, "Augumented reality system robust to speed and viewing limits based on Multi ArUco markers," in Proceedings of HCI Korea 2018, pp. 916-920, Jan. 2018.
  13. M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah, "A Review of Smart Home Applications based on Internet of Things," Journal of Network and Computer Applications, vol. 97, pp. 48-65, Nov. 2017. https://doi.org/10.1016/j.jnca.2017.08.017
  14. A. Asensio, A. Marco, R. Blasco, and R. Casas, "Protocol and Architecture to Bring Things into Internet of Things," International Journal of Distributed Sensor Networks, vol. 2014, pp. 1-18, Jun. 2014.
  15. C. Li, Y. Huang, and H. Chao, "UPnP IPv4/IPv6 Bridge for Home Networking Environment," IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 1651-1655, Dec. 2008. https://doi.org/10.1109/TCE.2008.4711216