DOI QR코드

DOI QR Code

SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis

  • Papynov, E.K. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Belov, A.A. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Shichalin, O.O. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Buravlev, I. Yu (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Azon, S.A. (Far Eastern Federal University) ;
  • Golub, A.V. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Gerasimenko, A.V. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Parotkina, Yu. А. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences) ;
  • Zavjalov, A.P. (Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences) ;
  • Tananaev, I.G. (Far Eastern Federal University) ;
  • Sergienko, V.I. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
  • Received : 2020.10.14
  • Accepted : 2021.01.27
  • Published : 2021.07.25

Abstract

In the present study, an original spark plasma sintering-reactive synthesis (SPS-RS) method for minerallike ceramic materials based on SrAl2Si2O8 feldspar-like skeleton structure was used for the first time, promising solid-state matrices for reliable immobilization of high-energy 90Sr. The method is based on the "in-situ" reaction of a mixture of SrO, Al2O3 and SiO2 oxides when heated by a unipolar pulsed current under compacting pressure. The phase and elemental composition structure were studied. The dynamics of the consolidation of the reaction mixture of oxides was studied in the range of 900-1200 ℃. The study found the temperature of the high-speed (minutes) SPS-RS formation of single-phase SrAl2Si2O8 composition ceramic in the absence of intermediate reaction products with a relative density of up to 99.2% and compressive strength up to 145 MPa and a strontium leaching rate of 10-4g/cm2·day.

Keywords

Acknowledgement

The reported study was funded by RFBR, project number 19-33-90078. Mechanical strength characteristics were investigated as a part within State Assignment of the Ministry of Science and Higher Education of the Russian Federation topic No. 00657-2020-0006.

References

  1. V.S. Semenishchev, A.V. Voronina, Isotopes of strontium: properties and applications, in: P. Pathak, D.K. Gupta (Eds.), Handb. Environ. Chem., Springer Nature, Switzerland, 2020, pp. 25-42, https://doi.org/10.1007/978-3-030-15314-4_2.
  2. Y. Sun, A.G. Chmielewski (Eds.), Applications of Ionizing Radiation, second ed., Institute of Nuclear Chemistry and Technology, Warszawa, 2017.
  3. R.C. O'Brien, R.M. Ambrosi, N.P. Bannister, S.D. Howe, H.V. Atkinson, Safe radioisotope thermoelectric generators and heat sources for space applications, J. Nucl. Mater. 377 (2008) 506-521, https://doi.org/10.1016/j.jnucmat.2008.04.009.
  4. A.I. Orlova, M.I. Ojovan, Ceramic mineral waste-forms for nuclear waste immobilization, Materials 12 (2019), https://doi.org/10.3390/ma12162638.
  5. S. Kurama, E. Ozel, The influence of different CaO source in the production of anorthite ceramics, Ceram. Int. 35 (2009) 827-830, https://doi.org/10.1016/j.ceramint.2008.02.024.
  6. P. Ptacek, F. Soukal, T. Opravil, E. Bartonickova, J. Wasserbauer, The formation of feldspar strontian (SrAl2Si2O8) via ceramic route: reaction mechanism, kinetics and thermodynamics of the process, Ceram. Int. 42 (2016) 8170-8178, https://doi.org/10.1016/j.ceramint.2016.02.024.
  7. Y.P. Fu, C.C. Chang, C.H. Lin, T.S. Chin, Solid-state synthesis of ceramics in the BaO-SrO-Al2O3-SiO2 system, Ceram. Int. 30 (2004) 41-45, https://doi.org/10.1016/S0272-8842(03)00059-2.
  8. C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, C. Colella, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater. 134 (2010) 65-71, https://doi.org/10.1016/j.micromeso.2010.05.008.
  9. Z. Luo, W. Lei, H. Liang, W. Xu, X. Liu, C. Qin, A. Lu, Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition, Ceram. Int. 46 (2020) 17698-17706, https://doi.org/10.1016/j.ceramint.2020.04.074.
  10. Z. Luo, W. Lei, H. Liang, W. Xu, X. Liu, C. Qin, A. Lu, Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition, Ceram. Int. 46 (2020) 17698-17706, https://doi.org/10.1016/j.ceramint.2020.04.074.
  11. Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662, https://doi.org/10.1016/j.matdes.2020.108662.
  12. E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, E.B. Modin, A.S. Portnyagin, I.A. Tkachenko, A.A. Belov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnologies Russ 12 (2017) 49-61, https://doi.org/10.1134/S1995078017010086.
  13. T.L. Simonenko, M.V Kalinina, N.P. Simonenko, E.P. Simonenko, O.V. Glumov, N.A. Mel'nikova, I.V. Murin, O.O. Shichalin, E.K. Papynov, O.A. Shilova, Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate- temperature solid electrolytes, Ceram. Int. 44 (2018) 19879-19884, https://doi.org/10.1016/j.ceramint.2018.07.249.
  14. A.I. Orlova, A.K. Koryttseva, A.E. Kanunov, V.N. Chuvil'deev, A.V. Moskvicheva, N.V. Sakharov, M.S. Boldin, A.V. Nokhrin, Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering, Inorg. Mater. 48 (2012) 313-317, https://doi.org/10.1134/S002016851202015X.
  15. O.O. Shichalin, E.K. Papynov, V.Y. Maiorov, A.A. Belov, E.B. Modin, I.Y. Buravlev, Y.A. Azarova, A.V. Golub, E.A. Gridasova, A.E. Sukhorada, I.G. Tananaev, V.A. Avramenko, Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides, Radiochemistry 61 (2019) 185-191, https://doi.org/10.1134/S1066362219020097.
  16. E.A. Potanina, A.I. Orlova, A.V. Nokhrin, D.A. Mikhailov, M.S. Boldin, N.V. Sakharov, O.A. Belkin, E.A. Lantsev, M.G. Tokarev, V.N. Chuvil'deev, Fine-grained tungstates SrWO4 and NaNd(WO4)2 with the scheelite structure prepared by spark Plasma Sintering, Russ. J. Inorg. Chem. 64 (2019) 296-302, https://doi.org/10.1134/S0036023619030161.
  17. E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, V.G. Kuryavyi, T.A. Kaidalova, SPS technique for ionizing radiation source fabrication based on dense cesium-containing core, J. Hazard Mater. 369 (2019) 25-30, https://doi.org/10.1016/j.jhazmat.2019.02.016.
  18. M. Biesuz, L. Spiridigliozzi, A. Marocco, G. Dell'Agli, V.M. Sglavo, M. Pansini, Sintering behavior of Ba/Sr celsian precursor obtained from zeolite-A by ion-exchange method, J. Am. Ceram. Soc. 100 (2017) 5433-5443, https://doi.org/10.1111/jace.15117.
  19. D.V. Dudina, A.K. Mukherjee, Reactive spark plasma sintering: Successes and challenges of nanomaterial synthesis, J. Nanomater. 2013 (2013), https://doi.org/10.1155/2013/625218.
  20. L.C. Harnett, L.J. Gardner, S.K. Sun, C. Mann, N.C. Hyatt, Reactive spark plasma sintering of Cs-exchanged chabazite: characterisation and durability assessment for Fukushima Daiichi NPP clean-up, J. Nucl. Sci. Technol. 56 (2019) 891-901, https://doi.org/10.1080/00223131.2019.1602484.
  21. S. Le Gallet, L. Campayo, E. Courtois, S. Hoffmann, Y. Grin, F. Bernard, F. Bart, Spark plasma sintering of iodine-bearing apatite, J. Nucl. Mater. 400 (2010) 251-256, https://doi.org/10.1016/j.jnucmat.2010.03.011.
  22. L. Wang, X. Shu, X. Lu, Y. Wu, Y. Ding, S. Zhang, Rapid synthesis of high densified single phase ceramic Gd2Zr2O7 by spark plasma sintering, Mater. Lett. 196 (2017) 403-405, https://doi.org/10.1016/j.matlet.2017.03.061.
  23. S.K. Sun, M.C. Stennett, C.L. Corkhill, N.C. Hyatt, Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition, J. Nucl. Mater. 500 (2018) 11-14, https://doi.org/10.1016/j.jnucmat.2017.12.021.
  24. E.K. Papynov, O.O. Shichalin, I.Y. Buravlev, A.A. Belov, A.S. Portnyagin, A.N. Fedorets, Y.A. Azarova, I.G. Tananaev, V.I. Sergienko, Spark plasma sintering-reactive synthesis of SrWO4 ceramic matrices for 90Sr immobilization, Vacuum (2020) 109628, https://doi.org/10.1016/j.vacuum.2020.109628.
  25. D. Long-Gonzalez, J. Lopez-Cuevas, C.A. Gutierrez-Chavarria, P. Pena, C. Baudin, X. Turrillas, Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process, Ceram. Int. 36 (2010) 661-672, https://doi.org/10.1016/j.ceramint.2009.10.008

Cited by

  1. Synthesis of Mineral-Like SrWO4 Ceramics with the Scheelite Structure and a Radioisotope Product Based on It vol.66, pp.9, 2021, https://doi.org/10.1134/s0036023621090114
  2. Thermal Expansion and Polymorphism of Slawsonite SrAl2Si2O8 vol.11, pp.10, 2021, https://doi.org/10.3390/min11101150
  3. Crystalline phosphates for HLW immobilization - composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology vol.559, 2021, https://doi.org/10.1016/j.jnucmat.2021.153407