• Title/Summary/Keyword: Ceramic matrices

Search Result 30, Processing Time 0.022 seconds

Effect of Reinforcing Materials on Properties of Molten Carbonate Fuel Cell Matrices

  • Moon, Young-Joon;Lee, Dokyol
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 1996
  • The molten carbonate fuel cell matrices, which are usually made of high surface, fine particle size ${\gamma}-LiAlO_2$ are reinforced with coarse particles of the same material and alumina fibers. An the effects of reinforcing materials on pore characteristics, sintering properties and mechanical properties of the matrices are examined.Among the matrices examined, the highest mechanical reinforcement has been achieved in the one containing 10 wt.% coarse particles and 20 wt.% alumina fibers.

  • PDF

SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis

  • Papynov, E.K.;Belov, A.A.;Shichalin, O.O.;Buravlev, I. Yu;Azon, S.A.;Golub, A.V.;Gerasimenko, A.V.;Parotkina, Yu. А.;Zavjalov, A.P.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2289-2294
    • /
    • 2021
  • In the present study, an original spark plasma sintering-reactive synthesis (SPS-RS) method for minerallike ceramic materials based on SrAl2Si2O8 feldspar-like skeleton structure was used for the first time, promising solid-state matrices for reliable immobilization of high-energy 90Sr. The method is based on the "in-situ" reaction of a mixture of SrO, Al2O3 and SiO2 oxides when heated by a unipolar pulsed current under compacting pressure. The phase and elemental composition structure were studied. The dynamics of the consolidation of the reaction mixture of oxides was studied in the range of 900-1200 ℃. The study found the temperature of the high-speed (minutes) SPS-RS formation of single-phase SrAl2Si2O8 composition ceramic in the absence of intermediate reaction products with a relative density of up to 99.2% and compressive strength up to 145 MPa and a strontium leaching rate of 10-4g/cm2·day.

Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell (인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향)

  • 윤기현;최재열;장재혁;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF

Optimization of Rod-shaped γ-LiAlO2 Particle Reinforced MCFC Matrices by Aqueous Tape Casting (수계 테이프 케스팅 법에 의한 봉상 γ-LiAlO2 입자 강화 MCFC 매트릭스 제조 공정의 최적화)

  • Choi, Hyun-Jong;Shin, Mi-Young;Hyun, Sang-Hoon;Lim, Hee-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Rod-shaped particle reinforced $LiAlO_2$ matrices for MCFC were fabricated by an aqueous tape-casting technique. The hydrolysis reaction and agglomeration of $\gamma-LiAlO_2$ particles in aqueous slurries were inhibited by additions of $LiOH{\cdot}H_2O$ and glycerin to the aqueous $\gamma-LiAlO_2$ slurry. The tape-casting, performed using the aqueous slurry containing protein albumin, was fast and led to an effective drying at casting temperature range of $60{\sim}65^{\circ}C$. The strength of the particle reinforced matrix was improved about 4 times compared to that of matrix without reinforcement. Pore size distribution ($0.1{\sim}0.4{\mu}m$) and porosity ($50{\sim}60%$) of the reinforced matrices were determined to be appropriate for the MCFC matrix. The aqueous tape casting process is not only environmental-friendly but also efficient for fabricating MCFC matrices compared to non-aqueous tape casting.

Chemical and Microstructural Changes at Interfaces between $ZrO_2.SiO_2$ Glass Fibers Prepared by Sol-Gel Method and Cement Matrices

  • Shin, Dae-Yong;Han, Sang-Mok
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.160-164
    • /
    • 1995
  • Mechanical and chemical tests were performed on $Zro_2 \cdot SiO_2$ glass fibers manufactured by the sol-gel method and E-glass fibers-reinforced cement composites in order to investigate the interactions between glass fibers and cement matrices. Chemical attack leads to corrosion of the glass fiber surfaces. In the corrosion reactions, the surface of $30ZrO_2 \cdot 70 SiO_2$ glass fibers developed a densified concentric layer, which consists of glass corrosion products with much higher Zr and lower Si than the fresh glass fiber. The layer of reaction product is regarded to stiffen the cement matrices and provide a useful improvement to the mechanical properties. The addition of $ZrO_2$ content increases the corrosion resistance of glass fibers in cement by forming a passivating layer on the surface of glass fibers.

  • PDF

Analysis of the Infrared Absorption Spectrums of Magnesite (마그네사이트의 적외선 흡수 스펙트럼 해석)

  • 오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.4
    • /
    • pp.226-229
    • /
    • 1977
  • The infrared absorption spectrum of Synthesized magnesite is shown in the wve number region 2510 and 745cm-1. By using Wilson's GF matrices the force constants' of the Urey-Bradley force field were deterined from the infrared absorption frequencies. For magnesite the stretching force constant K=5.41, the bending force constant H=0.46, the repulsive force constant F=1.97, and the force constant for the out-of-plane vibration fθ=0.65md/Å. For calcite they are K=5.51, H=0.38, F=1.88 and fθ=0.64md/Å.

  • PDF

Morphology Development of HAp Crystallites in GEL Matrix

  • Chang, Myung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.133-136
    • /
    • 2007
  • The crystal morphology of hydroxyapatite [HAp] phase in gelatin [GEL] matrices was investigated with the condition of a GEL precursor treatment in an aqueous solution of $H_{3}PO_{4}$ at $37-80^{\circ}C$. Needle-shaped nanocomposite particles were prepared through a dynamic reaction during a coprecipitation process using a phosphoric GEL solution. Various types of mineralized morphology appeared with a phosphorylated condition of the GEL solution. HAp/GEL nanocomposite slurries showed the existence of an octacalcium phosphate [OCP] phase during the process.

Preparation and Property of Ceramic/Polymer 3-3 Composites with Matrices (각종 Matrix를 이용한 Ceramic/Polymer 3-3 Composies의 제작 및 특성)

  • Park, J.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1122-1124
    • /
    • 1993
  • In this study, piezoceramics/polymer composites with 3-3 connectivity were made by BURPS(Burnout Plastic Sphere) technique with PZT ceramics and PVA sphere. And physical and dielectric properties dependent on the PVA wt.% were investigated. The density of porous piezoceramic and pieaoceramic/polymer composites were decreased almost linearly with increasing the PVA wt.%.

  • PDF

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.