Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.024

SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis  

Papynov, E.K. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Belov, A.A. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Shichalin, O.O. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Buravlev, I. Yu (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Azon, S.A. (Far Eastern Federal University)
Golub, A.V. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Gerasimenko, A.V. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Parotkina, Yu. А. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Zavjalov, A.P. (Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences)
Tananaev, I.G. (Far Eastern Federal University)
Sergienko, V.I. (Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2289-2294 More about this Journal
Abstract
In the present study, an original spark plasma sintering-reactive synthesis (SPS-RS) method for minerallike ceramic materials based on SrAl2Si2O8 feldspar-like skeleton structure was used for the first time, promising solid-state matrices for reliable immobilization of high-energy 90Sr. The method is based on the "in-situ" reaction of a mixture of SrO, Al2O3 and SiO2 oxides when heated by a unipolar pulsed current under compacting pressure. The phase and elemental composition structure were studied. The dynamics of the consolidation of the reaction mixture of oxides was studied in the range of 900-1200 ℃. The study found the temperature of the high-speed (minutes) SPS-RS formation of single-phase SrAl2Si2O8 composition ceramic in the absence of intermediate reaction products with a relative density of up to 99.2% and compressive strength up to 145 MPa and a strontium leaching rate of 10-4g/cm2·day.
Keywords
Sr-feldspar; Ceramic matrices; Radionuclides immobilization; Reactive synthesis; Spark plasma sintering; SPS-RS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, C. Colella, Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A, Microporous Mesoporous Mater. 134 (2010) 65-71, https://doi.org/10.1016/j.micromeso.2010.05.008.   DOI
2 R.C. O'Brien, R.M. Ambrosi, N.P. Bannister, S.D. Howe, H.V. Atkinson, Safe radioisotope thermoelectric generators and heat sources for space applications, J. Nucl. Mater. 377 (2008) 506-521, https://doi.org/10.1016/j.jnucmat.2008.04.009.   DOI
3 P. Ptacek, F. Soukal, T. Opravil, E. Bartonickova, J. Wasserbauer, The formation of feldspar strontian (SrAl2Si2O8) via ceramic route: reaction mechanism, kinetics and thermodynamics of the process, Ceram. Int. 42 (2016) 8170-8178, https://doi.org/10.1016/j.ceramint.2016.02.024.   DOI
4 Z. Luo, W. Lei, H. Liang, W. Xu, X. Liu, C. Qin, A. Lu, Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition, Ceram. Int. 46 (2020) 17698-17706, https://doi.org/10.1016/j.ceramint.2020.04.074.   DOI
5 O.O. Shichalin, E.K. Papynov, V.Y. Maiorov, A.A. Belov, E.B. Modin, I.Y. Buravlev, Y.A. Azarova, A.V. Golub, E.A. Gridasova, A.E. Sukhorada, I.G. Tananaev, V.A. Avramenko, Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides, Radiochemistry 61 (2019) 185-191, https://doi.org/10.1134/S1066362219020097.   DOI
6 M. Biesuz, L. Spiridigliozzi, A. Marocco, G. Dell'Agli, V.M. Sglavo, M. Pansini, Sintering behavior of Ba/Sr celsian precursor obtained from zeolite-A by ion-exchange method, J. Am. Ceram. Soc. 100 (2017) 5433-5443, https://doi.org/10.1111/jace.15117.   DOI
7 S. Le Gallet, L. Campayo, E. Courtois, S. Hoffmann, Y. Grin, F. Bernard, F. Bart, Spark plasma sintering of iodine-bearing apatite, J. Nucl. Mater. 400 (2010) 251-256, https://doi.org/10.1016/j.jnucmat.2010.03.011.   DOI
8 Y.P. Fu, C.C. Chang, C.H. Lin, T.S. Chin, Solid-state synthesis of ceramics in the BaO-SrO-Al2O3-SiO2 system, Ceram. Int. 30 (2004) 41-45, https://doi.org/10.1016/S0272-8842(03)00059-2.   DOI
9 V.S. Semenishchev, A.V. Voronina, Isotopes of strontium: properties and applications, in: P. Pathak, D.K. Gupta (Eds.), Handb. Environ. Chem., Springer Nature, Switzerland, 2020, pp. 25-42, https://doi.org/10.1007/978-3-030-15314-4_2.   DOI
10 A.I. Orlova, M.I. Ojovan, Ceramic mineral waste-forms for nuclear waste immobilization, Materials 12 (2019), https://doi.org/10.3390/ma12162638.   DOI
11 L.C. Harnett, L.J. Gardner, S.K. Sun, C. Mann, N.C. Hyatt, Reactive spark plasma sintering of Cs-exchanged chabazite: characterisation and durability assessment for Fukushima Daiichi NPP clean-up, J. Nucl. Sci. Technol. 56 (2019) 891-901, https://doi.org/10.1080/00223131.2019.1602484.   DOI
12 Z. Luo, W. Lei, H. Liang, W. Xu, X. Liu, C. Qin, A. Lu, Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition, Ceram. Int. 46 (2020) 17698-17706, https://doi.org/10.1016/j.ceramint.2020.04.074.   DOI
13 Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Des. 191 (2020) 108662, https://doi.org/10.1016/j.matdes.2020.108662.   DOI
14 E.A. Potanina, A.I. Orlova, A.V. Nokhrin, D.A. Mikhailov, M.S. Boldin, N.V. Sakharov, O.A. Belkin, E.A. Lantsev, M.G. Tokarev, V.N. Chuvil'deev, Fine-grained tungstates SrWO4 and NaNd(WO4)2 with the scheelite structure prepared by spark Plasma Sintering, Russ. J. Inorg. Chem. 64 (2019) 296-302, https://doi.org/10.1134/S0036023619030161.   DOI
15 D.V. Dudina, A.K. Mukherjee, Reactive spark plasma sintering: Successes and challenges of nanomaterial synthesis, J. Nanomater. 2013 (2013), https://doi.org/10.1155/2013/625218.   DOI
16 T.L. Simonenko, M.V Kalinina, N.P. Simonenko, E.P. Simonenko, O.V. Glumov, N.A. Mel'nikova, I.V. Murin, O.O. Shichalin, E.K. Papynov, O.A. Shilova, Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate- temperature solid electrolytes, Ceram. Int. 44 (2018) 19879-19884, https://doi.org/10.1016/j.ceramint.2018.07.249.   DOI
17 E.K. Papynov, O.O. Shichalin, I.Y. Buravlev, A.A. Belov, A.S. Portnyagin, A.N. Fedorets, Y.A. Azarova, I.G. Tananaev, V.I. Sergienko, Spark plasma sintering-reactive synthesis of SrWO4 ceramic matrices for 90Sr immobilization, Vacuum (2020) 109628, https://doi.org/10.1016/j.vacuum.2020.109628.   DOI
18 E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, V.G. Kuryavyi, T.A. Kaidalova, SPS technique for ionizing radiation source fabrication based on dense cesium-containing core, J. Hazard Mater. 369 (2019) 25-30, https://doi.org/10.1016/j.jhazmat.2019.02.016.   DOI
19 D. Long-Gonzalez, J. Lopez-Cuevas, C.A. Gutierrez-Chavarria, P. Pena, C. Baudin, X. Turrillas, Synthesis of monoclinic Celsian from Coal Fly Ash by using a one-step solid-state reaction process, Ceram. Int. 36 (2010) 661-672,   DOI
20 S.K. Sun, M.C. Stennett, C.L. Corkhill, N.C. Hyatt, Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition, J. Nucl. Mater. 500 (2018) 11-14, https://doi.org/10.1016/j.jnucmat.2017.12.021.   DOI
21 A.I. Orlova, A.K. Koryttseva, A.E. Kanunov, V.N. Chuvil'deev, A.V. Moskvicheva, N.V. Sakharov, M.S. Boldin, A.V. Nokhrin, Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering, Inorg. Mater. 48 (2012) 313-317, https://doi.org/10.1134/S002016851202015X.   DOI
22 L. Wang, X. Shu, X. Lu, Y. Wu, Y. Ding, S. Zhang, Rapid synthesis of high densified single phase ceramic Gd2Zr2O7 by spark plasma sintering, Mater. Lett. 196 (2017) 403-405, https://doi.org/10.1016/j.matlet.2017.03.061.   DOI
23 S. Kurama, E. Ozel, The influence of different CaO source in the production of anorthite ceramics, Ceram. Int. 35 (2009) 827-830, https://doi.org/10.1016/j.ceramint.2008.02.024.   DOI
24 Y. Sun, A.G. Chmielewski (Eds.), Applications of Ionizing Radiation, second ed., Institute of Nuclear Chemistry and Technology, Warszawa, 2017.
25 E.K. Papynov, O.O. Shichalin, V.Y. Mayorov, E.B. Modin, A.S. Portnyagin, I.A. Tkachenko, A.A. Belov, E.A. Gridasova, I.G. Tananaev, V.A. Avramenko, Spark Plasma Sintering as a high-tech approach in a new generation of synthesis of nanostructured functional ceramics, Nanotechnologies Russ 12 (2017) 49-61, https://doi.org/10.1134/S1995078017010086.   DOI