DOI QR코드

DOI QR Code

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • 투고 : 2020.07.10
  • 심사 : 2020.11.04
  • 발행 : 2021.05.25

초록

Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

키워드

과제정보

This work is part of the project supported by the Istanbul Technical University Research Foundation (Project No: 39416). We gratefully acknowledge Czech Metrology Institute-Inspectorate for Ionizing Radiation for providing the standard gamma-ray point sources.

참고문헌

  1. F. Akman, Z.Y. Khattari, M.R. Kacal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics, Radiat. Phys. Chem. 160 (2019) 9-14. https://doi.org/10.1016/j.radphyschem.2019.03.001
  2. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karata, Study of gamma radiation attenuation properties of some selected ternary alloys, J. Alloys Compd. 782 (2019) 315-322. https://doi.org/10.1016/j.jallcom.2018.12.221
  3. G. Hu, H. Hu, Q. Yang, B. Yu, W. Sun, Study on the design and experimental verification of multilayer radiation shield against mixed neutrons and γ-rays, Nucl. Eng. Technol. 52 (1) (2020) 178-184. https://doi.org/10.1016/j.net.2019.07.016
  4. C.G. Hernandez-Murillo, J.R.M. Contreras, L.A. Escalera-Velasco, H.A. de Leon-Martinez, H.R. Vega-Carrillo, X-ray and gamma ray shielding behavior of concrete blocks, Nucl. Eng. Technol. 52 (8) (2020) 1792-1797. https://doi.org/10.1016/j.net.2020.01.007
  5. K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Ann. Nucl. Energy 64 (2014) 301-310. https://doi.org/10.1016/j.anucene.2013.10.003
  6. B. Ahmed, G.B. Shah, A.H. Malik, R.M. Aurangzeb, Gamma-ray shielding characteristics of flexible silicone tungsten composites, Appl. Radiat. Isot. 155 (2020) 108901. https://doi.org/10.1016/j.apradiso.2019.108901
  7. F. Cattant, D. Crusset, D. Feron, Corrosion issues in nuclear industry today, Mater. Today 11 (10) (2008) 32-37. https://doi.org/10.1016/S1369-7021(08)70205-0
  8. A. Mansour, M.I. Sayyed, K.A. Mahmoud, E. S, akar, E.G. Kovaleva, Modified halloysite minerals for radiation shielding purposes, J. Radiat. Res. Appl. Sc. 13 (1) (2020) 94-101. https://doi.org/10.1080/16878507.2019.1699680
  9. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems, Prog. Nucl. Energy 118 (2020) 103118, https://doi.org/10.1016/j.pnucene.2019.103118.
  10. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  11. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing, Prog. Nucl. Energy 113 (2019) 95-113. https://doi.org/10.1016/j.pnucene.2019.01.016
  12. C.V. More, R.R. Bhosale, P.P. Pawar, Detection of new polymer materials as gamma-ray-shielding materials, Radiation Effects and Defects in Solids, Incorporating Plasma Science and Plasma Technology 172 (5-6) (2017) 469-484.
  13. S.A.M. Issa, A.M. Ali, H.O. Tekin, Y.B. Saddeek, A. Al-Hajry, H. Algarni, G. Susoy, Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3, Nucl. Eng. Technol. 52 (2020) 1297-1303. https://doi.org/10.1016/j.net.2019.11.017
  14. M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Physics 11 (2018) 40-45. https://doi.org/10.1016/j.rinp.2018.08.029
  15. A. Levet, E. Kavaz, Y. Ozdemir, An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys, J. Alloys Compd. 819 (2020) 152946, https://doi.org/10.1016/j.jallcom.2019.152946.
  16. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310. https://doi.org/10.1016/j.anucene.2013.10.003
  17. M.R. Kacal, F. Akman, M.I. Sayyed, Investigation of radiation shielding properties for some ceramics, Radiochim. Acta 107 (2) (2018) 179-191.
  18. M. Gorbotenko, Y. Yuferev, Ceramicrete as a Means for Radioactive Waste Containment and Nuclear Shielding, Reports by All-Russian Research Institute of Experimental Physics Federation, to Argonne National Laboratory, Sarov, Russian, 2002.
  19. A.S. Wagh, S.Y. Sayenko, A. Dovbnya, V. Shkuropatenko, R. Tarasov, A. Rybka, A. Zakharchenko, Durability and shielding performance of borated ceramicrete coatings in beta and gamma radiation fields, J. Nucl. Mater. 462 (2015) 165-172. https://doi.org/10.1016/j.jnucmat.2015.03.049
  20. S. Mahmoudi, A. Bennour, A. Meguebli, E. Srasra, F. Zargouni, Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia, Appl. Clay Sci. 127-128 (2016) 78-87. https://doi.org/10.1016/j.clay.2016.04.010
  21. M.E. Mahmoud, A.M. El-Khatib, A.M. Halbas, R.M. El-Sharkawy, Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide, Ceram. Int. 46 (2020) 15686-15694. https://doi.org/10.1016/j.ceramint.2020.03.119
  22. J. Klimke, M. Trunec, A. Krell, Transparent tetragonal Yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence, J. Am. Ceram. Soc. 94 (6) (2011) 1850-1858. https://doi.org/10.1111/j.1551-2916.2010.04322.x
  23. R.R. Enrique, A.R.G. Jose, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today, Proceedings 3 (2016) 249-257. https://doi.org/10.1016/j.matpr.2016.01.066
  24. E. Kavaz, F.I. El_Agawany, H.O. Tekin, U. Perisanoglu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics, J. Phys. Chem. Solid. 142 (2020) 109437. https://doi.org/10.1016/j.jpcs.2020.109437
  25. British Geological Survey, World Mineral Production, 2008-12, British Geological Survey, 2012. Keyworth, Nottingham.
  26. G. Bulut, M. Chimeddorj, F. Esenli, M.S. Celik, Production of desiccants from Turkish bentonites, Appl. Clay Sci. 46 (2009) 141-147. https://doi.org/10.1016/j.clay.2009.07.013
  27. E. Cokca, Z. Yilmaz, Use of rubber and bentonite added fly ash as a liner material, Waste Manag. 24 (2004) 153-164. https://doi.org/10.1016/j.wasman.2003.10.004
  28. H. Akgun, A.G. Turkmenoglu, I. Met, G.P. Yal, M.K. Kockar, The use of Ankara Clay as a compacted clay liner for landfill sites, Clay Miner. 52 (2017) 391-412. https://doi.org/10.1180/claymin.2017.052.3.08
  29. N. Tsoulfanidis, S. Landsberger, Measurement and Detection of Radiation, third ed., CRC Press, Boca Raton, 2010.
  30. ORTEC, GMX Series Coaxial HPGe Detector Product Configuration Guide, 2003.
  31. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for g-rays radiation shielding, Nucl. Instrum. Methods B. 356-357 (2015) 88-93. https://doi.org/10.1016/j.nimb.2015.04.062
  32. J.E. Martin, Physics for Radiation Protection, Markono Print Media Pte Ltd, Singapore, 2013.
  33. R.B. Firestone, in: A. Vertes, S. Nagy, Z. Klencs ar, R.G. Lovas, F. R osch (Eds.), Handbook of Nuclear Chemistry, Springer, Berlin, 2011.
  34. J.E. Turner, Atoms, Radiation, and Radiation Protection, Wiley, New York, 2007.
  35. M.M. El-Toony, G. Eid, H.M. Algarnic, T.F. Alhawimald, E.E. Abel-Hady, Synthesis and characterisation of smart poly vinyl ester/Pb2O3 nanocomposite for gamma radiation shielding, Radiat. Phys. Chem. 168 (2020) 108536, https://doi.org/10.1016/j.radphyschem.2019.108536.
  36. M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A.A. Thabet, Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials, Radiat. Phys. Chem. 145 (2018) 160-173. https://doi.org/10.1016/j.radphyschem.2017.10.017
  37. R. Mirji, B. Lobo, Study of polycarbonateebismuth nitrate composite for shielding against gamma radiation, J. Radioanal. Nucl. Chem. 324 (2020) 7-19. https://doi.org/10.1007/s10967-020-07038-3
  38. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding, Nucl. Instrum. Methods B. 356-357 (2015) 88-93. https://doi.org/10.1016/j.nimb.2015.04.062
  39. O. Yazici, Investigation of Sol-Gel Derived Spinel Added Alumina Low Cement Castable Refractories, 2008, p. 52. MSc Thesis (in Turkish).
  40. W. Cheewasukhanont, P. Limkitjaroenporn, S. Kothan, C. Kedkaew, J. Kaewkhao, The effect of particle size on radiation shielding properties for bismuth borosilicate glass, Radiat. Phys. Chem. 172 (2020) 108791, https://doi.org/10.1016/j.radphyschem.2020.108791.
  41. A.E. Abdo, M.A. El-Sarraf, F.A. Gaber, Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation, Ann. Nucl. Energy 30 (2003) 175-187. https://doi.org/10.1016/S0306-4549(02)00052-X
  42. I. Hager, Y.S. Rammah, H.A. Othman, E.M. Ibrahim, S.F. Hassan, Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation, J. Theor. Appl. Phys. 13 (2019) 141-153. https://doi.org/10.1007/s40094-019-0332-5
  43. R.R. Enrique, A.R.G. Jose, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today, Proceedings 3 (2016) 249-257. https://doi.org/10.1016/j.matpr.2016.01.066
  44. J. Klimke, M. Trunec, A. Krell, Transparent tetragonal Yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence, J. Am. Ceram. Soc. 94 (6) (2011) 1850-1858. https://doi.org/10.1111/j.1551-2916.2010.04322.x
  45. S. Stojiljkovic, M. Stamenkovic, D. Kostic, M. Miljkovic, B. Arsic, I. Savic, I. Savic, Investigations of the changes in the bentonite structure caused by the different treatments, Sci. Sinter. 47 (2015) 51-59. https://doi.org/10.2298/SOS1501051S
  46. H.H. Murray, Bentonite applications, in: Developments in Clay Science, vol. 2, Elsevier, New York, 2006, pp. 111-130.
  47. G. Bulut, M. Chimeddorj, F. Esenli, M.S. Celik, Production of desiccants from Turkish bentonites, Appl. Clay Sci. 46 (2009) 141-147. https://doi.org/10.1016/j.clay.2009.07.013
  48. N.J. AbuAlRoos, N.A.B. Amin, R. Zainon, Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review, Radiat. Phys. Chem. 165 (2019) 108439. https://doi.org/10.1016/j.radphyschem.2019.108439
  49. H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598. https://doi.org/10.1007/s10064-018-1391-6
  50. Radioisotopes in Medicine, https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx (accessed 12 Mar 2020).
  51. S. Mirzadeh, L.F. Mausner, M.A. Garland, A. Vertes, S. Nagy, Z. Klencsar, R.G. Lovas, F. Rosch (Eds.), Handbook of Nuclear Chemistry, Springer, Berlin, 2011.
  52. M.H. Kharita, M. Takeyeddin, M. Alnassar, S. Yousef, Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics, Prog. Nucl. Energy 50 (2008) 33-36. https://doi.org/10.1016/j.pnucene.2007.10.004

피인용 문헌

  1. Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability vol.14, pp.16, 2021, https://doi.org/10.3390/ma14164697