DOI QR코드

DOI QR Code

The in vitro and in vivo Safety Evaluation of Lactobacillus acidophilus IDCC 3302

  • Bang, Won Yeong (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Chae, Seung A (Ildong Bioscience) ;
  • Ban, O-Hyun (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Oh, Sangki (Ildong Bioscience) ;
  • Park, Chanmi (Ildong Bioscience) ;
  • Lee, Minjee (Ildong Bioscience) ;
  • Shin, Minhye (Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Yang, Jungwoo (Ildong Bioscience) ;
  • Jung, Young Hoon (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2020.11.18
  • Accepted : 2020.12.15
  • Published : 2021.03.28

Abstract

As consumption of healthy foods continues to garner remarkable public attention, ensuring probiotic safety has become a priority. In this study, the safety of Lactobacillus acidophilus IDCC 3302 was assessed in vitro and in vivo. L. acidophilus IDCC 3302 showed negative results for hemolytic and β-glucuronidase activities. The whole-genome analysis (WGA) revealed that L. acidophilus IDCC 3302 did not possess antibiotic resistance or virulence genes. The minimal inhibitory concentrations of L. acidophilus IDCC 3302 confirmed its safety concerning antibiotic resistance. Furthermore, L. acidophilus IDCC 3302 was demonstrated to be nontoxic in the oral toxicity test in rats. Therefore, the results suggested that L. acidophilus IDCC 3302 might be safe for human consumption.

Keywords

Acknowledgement

This work was supported by Ildong Bioscience, Co., Ltd., and the National Research Foundation of Korea (NRF) grant funded by Korea government (Ministry of Science and ICT, MSIT) [grant number 2020R1C1C1005251].

References

  1. Chandan RC. 1999. Enhancing market value of milk by adding cultures. J. Dairy Sci. 82: 2245-2256. https://doi.org/10.3168/jds.S0022-0302(99)75472-X
  2. Gill H, Prasad J. 2008. Probiotics, immunomodulation, and health benefits. Adv. Exp. Med. Biol. 606: 423-454. https://doi.org/10.1007/978-0-387-74087-4_17
  3. Francoise L. 2010. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 27: 698-709. https://doi.org/10.1016/j.fm.2010.05.016
  4. Chamba JF, Irlinger F. 2004. Secondary and adjunct cultures. pp. 191-206. In Patrick FF, Paul LHM, Timothy MC, Timothy PG (eds.), Cheese: chemistry, physics and microbiology, 3rd Ed. Elsevier Academic Press, London.
  5. Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, et al. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65: 351-354. https://doi.org/10.1128/AEM.65.1.351-354.1999
  6. Danielsen M, Wind A. 2003. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82: 1-11. https://doi.org/10.1016/S0168-1605(02)00254-4
  7. Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ. 1998. The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167: 185-189. https://doi.org/10.1111/j.1574-6968.1998.tb13226.x
  8. Kos BVZE, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94: 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
  9. Tannock GW. 1999. Probiotics: a critical review. J. Antimicrob. Chemother. 43: 849.
  10. Abriouel H, Casado Munoz MC, Lerma LL, Montoro BP, Bokelmann W, Pichner R, et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 78: 465-481. https://doi.org/10.1016/j.foodres.2015.09.016
  11. Donohue DC, Salminen S. 1996. Safety of probiotic bacteria. Asia pacific J. Clin. Nutr. 5: 25-28.
  12. Saxelin M, Rautelin H, Salminen S, Makela PH. 1996. Safety of commercial products with viable Lactobacillus strains. Infect. Dis. Clin. Pract. 5: 331-335. https://doi.org/10.1097/00019048-199606000-00011
  13. Antony SJ. 2000. Lactobacillemia: an emerging cause of infection in both the immunocompromised and the immunocompetent host. J. Natl. Med. Assoc. 92: 83-86.
  14. Schlegel L, Lemerle S, Geslin P. 1998. Lactobacillus species as opportunistic pathogens in immunocompromised patients. Eur. J. Clin. Microbiol. Infect. Dis. 17: 887-888. https://doi.org/10.1007/s100960050216
  15. Vijayalakshmi S, Adeyemi DE, Choi IY, Sultan G, Madar IH, Park MK. 2020. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. LWT 130: 109617. https://doi.org/10.1016/j.lwt.2020.109617
  16. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. 2005. VFDB: a reference database for bacterial virulence factors. Nucl. Acids Res. 33: D325-D328. https://doi.org/10.1093/nar/gki008
  17. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67: 2640-2644. https://doi.org/10.1093/jac/dks261
  18. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucl. Acids Res. 44: W16-W21. https://doi.org/10.1093/nar/gkw387
  19. Priyadarshani WM, Rakshit SK. 2011. Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int. J. Food Sci. Technol. 46: 2062-2069. https://doi.org/10.1111/j.1365-2621.2011.02717.x
  20. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, et al. 2018. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 16: e05206.
  21. OECD. 2001. OECD Guideline for the Testing of Chemicals. No. 423: Acute Oral Toxicity - Acute Toxic Class Method, pp.14. Paris, France: Organisation for Economic Co-operation and Development.
  22. Ammor MS, Florez AB, Mayo B. 2007. Antibiotic resistance in nonenterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 24: 559-570. https://doi.org/10.1016/j.fm.2006.11.001
  23. Charteris WP, Kelly PM, Morelli L, Collins JK. 2001. Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J. Food Prot. 64: 2007-2014. https://doi.org/10.4315/0362-028X-64.12.2007
  24. Mayrhofer S, Van Hoek AHAM, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2010.08.024
  25. Temmerman R, Pot B, Huys G, Swings J. 2003. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 81: 1-10. https://doi.org/10.1016/S0168-1605(02)00162-9
  26. Kodner C, Kudrimoti A. 2003. Diagnosis and management of acute interstitial nephritis. Am. Fam. Physician 67: 2527-2534.
  27. Kim DH, Jin YH. 2001. Intestinal bacterial β-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 24: 564-567. https://doi.org/10.1007/BF02975166
  28. Choi YB, Kim KS, Rhee JS. 2002. Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnol. Lett. 24: 2113-2116. https://doi.org/10.1023/A:1021390120400
  29. Delgado S, O' Sullivan E, Fitzgerald G, Mayo B. 2008. In vitro evaluation of the probiotic properties of human intestinal Bifidobacterium species and selection of new probiotic candidates. J. Appl. Microbiol. 104: 1119-1127. https://doi.org/10.1111/j.1365-2672.2007.03642.x
  30. Colombo M, Castilho NP, Todorov SD, Nero LA. 2018. Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol. 18: 219. https://doi.org/10.1186/s12866-018-1356-8
  31. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, et al. 2010. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64: S95-S100. https://doi.org/10.1038/ejcn.2010.218
  32. Barbieri F, Montanari C, Gardini F, Tabanelli G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8: 17. https://doi.org/10.3390/foods8010017
  33. Ladero V, Calles-Enriquez M, Fernandez M, Alvarez MA. 2010. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 6: 145-156. https://doi.org/10.2174/157340110791233256
  34. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach JT, Hormannsperger G. 2010. Safety assessment of probiotics for human use. Gut Microbes 1: 164-185. https://doi.org/10.4161/gmic.1.3.12127
  35. Uribarri J, Oh MS, Carroll HJ. 1998. D-lactic acidosis: a review of clinical presentation, biochemical features, and pathophysiologic mechanism. Medicine 77: 73-82. https://doi.org/10.1097/00005792-199803000-00001
  36. Moller PD, Diernaes L, Sehested J, Hyldgaard-Jensen J, Skadhauge E. 1997. Absorption and fate of L-and D-lactic acid in ruminants. Physiol. A Physiol. 118: 387-388.
  37. Quigley EM, Pot B, Sanders ME. 2018. 'Brain Fogginess' and DLactic acidosis: probiotics are not the cause. Clin. Transl. Gastroenterol. 9: 187. https://doi.org/10.1038/s41424-018-0057-9
  38. Sulemankhil I, Parent M, Jones ML, Feng Z, Labbe A, Prakash S. 2012. In vitro and in vivo characterization and strain safety of Lactobacillus reuteri NCIMB 30253 for probiotic applications. Can. J. Microbiol. 58: 776-787. https://doi.org/10.1139/w2012-050