DOI QR코드

DOI QR Code

Screening of Myxobacteria Carrying Tubulysin Biosynthetic Genes

  • 투고 : 2020.10.06
  • 심사 : 2020.11.28
  • 발행 : 2021.03.28

초록

Tubulysins are a group of secondary metabolites produced by myxobacteria that inhibit the function of the eukayotic cytoskeleton. We developed a pair of PCR primers that specifically amplified tubulysin biosynthetic genes. Using these primers, eight out of the eighty-one strains of myxobacteria belonging to the Cystobacteraceae family that harbored putative tubulysin biosynthetic genes were screened through PCR analysis. The selected strains included two Archangium gephyra, two Stigmatella sp., two Vitiosangium cumulatum, and two unidentified myxobacteria. LC-MS analysis of the culture extracts from the selected strains revealed that A. gephyra KYC4066 produced putative tubulysin A and B.

키워드

참고문헌

  1. Gerth K, Pradella S, Perlova O, Beyer S, Muller R. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechol. 106: 233-253. https://doi.org/10.1016/j.jbiotec.2003.07.015
  2. Schaberle TF, Lohr F, Schmitz A, Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31: 953-972. https://doi.org/10.1039/c4np00011k
  3. Hyun H, Cho K. 2018. Secondary metabolites of myxobacteria. Korean J. Microbiol. 54: 175-187. https://doi.org/10.7845/KJM.2018.8042
  4. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physicochemical and biological properties. J. Antibiot. 49: 560-563. https://doi.org/10.7164/antibiotics.49.560
  5. Stein A. 2010. Ixabepilone. Clin. J. Oncol. Nurs. 14: 65-71. https://doi.org/10.1188/10.CJON.65-71
  6. Sasse F, Steinmetz H, Heil J, Hofle G, Reichenbach H. 2000. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. 53: 879-885. https://doi.org/10.7164/antibiotics.53.879
  7. Murray BC, Peterson MT, Fecik RA. 2015. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep. 32: 654-662. https://doi.org/10.1039/C4NP00036F
  8. Reddy JA, Dorton R, Bloomfield A, Nelson M, Dircksen C, et al. 2018. Pre-clinical evaluation of EC1456, a folate-tubulysin anticancer therapeutic. Sci. Rep. 8: 8943. https://doi.org/10.1038/s41598-018-27320-5
  9. Szigetvari NM, Dhawan D, Ramos-Vara JA, Leamon CP, Klein PJ, Ruple AA, et al. 2018. Phase I/II clinical trial of the targeted chemotherapeutic drug, folate-tubulysin, in dogs with naturallyoccurring invasive urothelial carcinoma. Oncotarget 9: 37042-37053. https://doi.org/10.18632/oncotarget.26455
  10. Steinmetz H, Glaser N, Herdtweck E, Sasse F, Reichenbach H, Hofle G. 2004. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins - powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. 43: 4888-4892. https://doi.org/10.1002/anie.200460147
  11. Chai Y, Pistorius D, Ullrich A, Weissman KJ, Kazmaier U, Muller R. 2010. Discovery of 23 natural tubulysins from Angiococcus disciformis An d48 and Cystobacter SBCb004. Chem. Biol. 17: 296-309. https://doi.org/10.1016/j.chembiol.2010.01.016
  12. Sandmann A, Sasse F, Muller R. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11: 1071-1079. https://doi.org/10.1016/j.chembiol.2004.05.014
  13. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd Ed. Bergey's Manual Trust, East Lansing, MI, USA.
  14. Park S, Lee B, Kim J, Lee C, Jang E, Cho K. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32: 218-223.
  15. Hyun H, Chung J, Lee H, Youn J, Lee C, Kim D, et al. 2009. Isolation of cellulose-degrading myxobacteria Sorangium cellulosum. Korean J. Microbiol. 45: 48-53.
  16. Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44-51. https://doi.org/10.4014/kjmb.1210.10011
  17. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. 1996. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol. 46: 1088-1092. https://doi.org/10.1099/00207713-46-4-1088
  18. Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  21. Pradella S, Hans A, Sproer C, Reichenbach H, Gerth K, Beyer S. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178: 484-492. https://doi.org/10.1007/s00203-002-0479-2
  22. Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, et al. 2013. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci. Rep. 3: 2101. https://doi.org/10.1038/srep02101
  23. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.