DOI QR코드

DOI QR Code

Taxus chinensis로부터 파클리탁셀 정제를 위한 개선된 아세톤-물 분별침전 공정 개발 및 그 동역학 및 열역학적 해석

Development of An Improved Acetone-Water Fractional Precipitation Process for Purification of Paclitaxel from Taxus chinensis and Its Kinetic and Thermodynamic Analysis

  • 강회종 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Kang, Hoe-Jong (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 투고 : 2021.04.09
  • 심사 : 2021.05.05
  • 발행 : 2021.08.01

초록

본 연구에서는 초음파 캐비태이션 버블와 가스 버블를 이용한 파클리탁셀의 개선된 아세톤-물 분별침전 공정을 개발하였다. 전통적 방법에 비해 침전에 소요되는 시간이 20~25배 단축되었다. 또한 파클리탁셀의 침전물 크기는 3.5~5.5배 감소하였으며 파클리탁셀의 확산 계수는 3.5~6.7배 증가하였다. 초음파 캐비태이션 버블을 이용한 침전의 경우 초음파 파워는 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 가스 버블을 이용한 침전의 경우 가스 유량은 증가할수록, 침전 온도는 감소할수록 침전 속도 상수는 증가하였다. 열역학적 해석을 통해 개선된 분별침전은 비자발적 발열 공정이었다.

In this study, an improved acetone-water fractional precipitation process for paclitaxel using ultrasonic cavitation bubbles and gas bubbles was developed. Compared to the conventional method, the time required for precipitation has been reduced by 20~25 times. In addition, the particle size of paclitaxel decreased by 3.5~5.5 times and the diffusion coefficient of paclitaxel increased by 3.5~6.7 times. In the case of precipitation using ultrasonic cavitation bubbles, as the ultrasonic power increased and the temperature decreased, the precipitation rate constant increased. In the case of precipitation using gas bubbles, as the gas flow rate increased and the temperature decreased, the precipitation rate constant increased. Thermodynamic parameters revealed the exothermic, irreversible, and nonspontaneous nature of the improved fractional precipitation.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1A2C1003186).

참고문헌

  1. Park, J. M. and Kim, J. H., "Ultrasound-assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis," Korean Chem. Eng. Res., 59, 106-111(2021).
  2. Jo, Y. J. and Kim, J. H., "Effective Diffusivity and Mass Transfer Coefficient During the Extraction of Paclitaxel from Taxus chinensis Using Methanol,"Biotechnol. Bioprocess Eng., 24, 818-823(2019). https://doi.org/10.1007/s12257-019-0148-9
  3. Jang, Y. S. and Kim, J. H., "Characteristics and Mechanism of Microwave-assisted Drying of Amorphous Paclitaxel for Removal of Residual Solvent", Biotechnol. Bioprocess Eng., 24, 529-535 (2019). https://doi.org/10.1007/s12257-019-0076-8
  4. Ghorbani, M., Pourjafar, F., Saffari, M. and Asgari, Y., "Paclitaxel Resistance Resulted in a Stem-like State in Triple-negative Breast Cancer: A Systems Biology Approach,"Meta Gene, 26,100800 (2020). https://doi.org/10.1016/j.mgene.2020.100800
  5. Sun, T., Liu, Y., Li, M., Yu, H. and Piao, H., "Administration with Hyperoside Sensitizes Breast Cancer Cells to Paclitaxel by Blocking the TLR4 Signaling,"Mol. Cell. Probes, 53, 101602 (2020). https://doi.org/10.1016/j.mcp.2020.101602
  6. Choi, H. K., Son, J. S., Na, G. H., Hong, S. S., Park, Y. S. and Song, J. Y., "Mass Production of Paclitaxel by Plant Cell Culture,"Korean J. Plant Biotechnol., 29, 59-62(2002). https://doi.org/10.5010/JPB.2002.29.1.059
  7. Pyo, S. H., Choi, H. J. and Han, B. H., "Large-scale Purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, Semisynthetic Precursors of Paclitaxel, from Cell Cultures of Taxus chinensis," J. Chromatogr. A, 1123, 15-21(2006). https://doi.org/10.1016/j.chroma.2006.04.093
  8. Rao, K., Hanuman, J., Alvarez, C., Stoy, M., Juchum, J., Davies, R. and Baxley, R., "A New Large-scale Process for Taxol and Related Taxanes from Taxus brevifolia," Pharm. Res., 12, 1003-1010(1995). https://doi.org/10.1023/A:1016206314225
  9. Park, G. Y., Kim, G. J. and Kim, J. H., "Effect of Tar Compounds on the Purification Efficiency of Paclitaxel from Taxus chinensis," J. Ind. Eng. Chem., 21, 151-154(2015). https://doi.org/10.1016/j.jiec.2014.03.042
  10. Kang, H. J. and Kim, J. H., "Removal of Residual Toluene and Methyl Tertiary Butyl Ether from Amorphous Paclitaxel by Simple Rotary Evaporation with Alcohol Pretreatment," Biotechnol. Bioprocess Eng., 25, 86-93(2020). https://doi.org/10.1007/s12257-019-0337-6
  11. Kang, H. J. and Kim, J. H., "Removal of Residual Chloroform from Amorphous Paclitaxel Pretreated by Alcohol," Korean J. Chem. Eng., 36, 1965-1970(2019). https://doi.org/10.1007/s11814-019-0413-9
  12. Pyo, S. H., Park, H. B., Song, B. K., Han, B. H. and Kim, J. H., "A Large-scale Purification of Paclitaxel from Cell Cultures of Taxus chinensis," Process Biochem., 39, 1985-1991(2004). https://doi.org/10.1016/j.procbio.2003.09.028
  13. Jeon, K. Y. and Kim, J. H., "Improvement of Fractional Precipitation Process for Pre-purification of Paclitaxel," Process Biochem., 44, 736-741(2009). https://doi.org/10.1016/j.procbio.2009.03.007
  14. Kang, I. S. and Kim, J. H., "Effect of Reactor Type on the Purification Efficiency of Paclitaxel in the Increased Surface Area Fractional Precipitation Process," Sep. Purif. Technol., 99, 14-19 (2012). https://doi.org/10.1016/j.seppur.2012.08.025
  15. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "Fractional Precipitation for Paclitaxel Pre-purification from Plant Cell Cultures of Taxus chinensis," Biotechnol. Lett., 22, 1753-1756(2000). https://doi.org/10.1023/A:1005642001815
  16. Kim, J. H., Kang, I. S., Choi, H. K., Hong, S. S. and Lee, H. S., "A Novel Prepurification for Paclitaxel from Plant Cell Cultures," Process Biochem., 37, 679-682(2002). https://doi.org/10.1016/S0032-9592(01)00247-3
  17. Jeon, S. I., Mun, S. Y. and Kim, J. H., "Optimal Temperature Control in Fractional Precipitation for Paclitaxel Pre-purification," Process Biochem., 41, 276-280(2006). https://doi.org/10.1016/j.procbio.2005.07.016
  18. Lee, J. Y. and Kim, J. H., "Influence of Crude Extract Purity and Pure Paclitaxel Content on Fractional Precipitation for Purification of Paclitaxel," Sep. Purif. Technol., 103, 8-14(2013). https://doi.org/10.1016/j.seppur.2012.10.004
  19. Jeon, Y. L. and Kim, J. H., "Precipitation Characteristics of Paclitaxel in Solvent Systems with Different Ion Exchange Resins," Korean J. Chem. Eng., 30, 1954-1959(2013). https://doi.org/10.1007/s11814-013-0136-2
  20. Lee, J. Y. and Kim, J. H., "Evaluation of the Effect of Crude Extract Purity and Pure Paclitaxel Content on the Increased Surface Area Fractional Precipitation Process for the Purification of Paclitaxel," Process Biochem., 47, 2388-2397(2012). https://doi.org/10.1016/j.procbio.2012.09.023
  21. Lee, C. G. and Kim, J. H., "Improved Fractional Precipitation Method for Purification of Paclitaxel," Process Biochem., 49, 1370-1376(2014). https://doi.org/10.1016/j.procbio.2014.04.011
  22. Seo, H. W. and Kim, J. H., "Ultrasound-assisted Fractional Precipitation of Paclitaxel from Taxus chinensis cell cultures," Process Biochem., 87, 238-243(2019). https://doi.org/10.1016/j.procbio.2019.09.019
  23. Jordens, J., Coker, N. D., Gielen, B., Gerven, T. V. and Braeken, L., "Ultrasound Precipitation of Manganese Carbonate: The Effect of Power and Frequency on Particle Properties," Ultrason. Sonochem., 26, 64-72(2015). https://doi.org/10.1016/j.ultsonch.2015.01.017
  24. Gamborg, O. L., Miller, R. A. and Ojima, K., "Nutrient Requirements of Suspension Cultures of Soybean Root Cells," Exp. Cell Res., 50, 151-158(1968). https://doi.org/10.1016/0014-4827(68)90403-5
  25. Sim, H. A., Lee, J. Y. and Kim, J. H., "Evaluation of a High Surface Area Acetone/pentane Precipitation Process for the Purification of Paclitaxel from Plant Cell Cultures," Sep. Purif. Technol., 89, 112-116(2012). https://doi.org/10.1016/j.seppur.2012.01.017
  26. Kim, J. H., "Comparison of Conventional Solvent Extraction, Microwave-assisted Extraction, and Ultrasound-assisted Extraction Methods for Paclitaxel Recovery from Biomass," Korean Chem. Eng. Res., 58, 273-279(2020).
  27. Yoo, K. W. and Kim, J. H., "Kinetics and Mechanism of Ultrasound-assisted Extraction of Paclitaxel from Taxus chinensis," Biotechnol. Bioprocess Eng., 23, 532-540(2018). https://doi.org/10.1007/s12257-018-0190-z
  28. Kang, H. J. and Kim, J. H., "Cavitation Bubble- And Gas Bubbleinduced Fractional Precipitation of Paclitaxel from Taxus chinensis," Process Biochem., 99, 316-323(2020). https://doi.org/10.1016/j.procbio.2020.09.020
  29. Park, J. N. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Fractional Precipitation of (+)-dihydromyricetin," Process Biochem., 53, 244-231(2017).
  30. Dalvi, S. V. and Dave, R. N., "Analysis of Nucleation Kinetics of Poorly Water-soluble Drugs in Presence of Ultrasound and Hydroxypropyl Methyl Cellulose During Antisolvent Precipitation," Int. J. Pharm., 387, 172-179(2010). https://doi.org/10.1016/j.ijpharm.2009.12.026
  31. Kalu, P. N. and Waryoba, D. R., "A JMAK-microhardness Model for Quantifying the Kinetics of Restoration Mechanisms in Inhomogeneous Microstructure," Mater. Sci. Eng. A, 464, 68-75 (2007). https://doi.org/10.1016/j.msea.2007.01.124
  32. Yang, J. W. and Kim, J. H., "Evaluation of Adsorption Characteristics of 2-picoline Onto Sylopute," Korean Chem. Eng. Res., 57, 210-218(2019).
  33. Cho, D. N. and Kim, J. H., "Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene Onto Sylopute," Korean Chem. Eng. Res., 58, 127-134(2020).
  34. Park, S. H. and Kim, J. H., "Equilibrium, Isotherm, Kinetic and Thermodynamic Studies for Adsorption of 7-epi-10-deacetylpaClitaxel from Taxus chinensis on Sylopute," Korean Chem. Eng. Res., 58, 113-121(2020).
  35. Kang, S. S. and Kim, J. H., "Kinetics, Mechanism, and Thermodynamics Studies of Vacuum Drying of Biomass from Taxus chinensis Cell Cultures," Biotechnol. Bioprocess Eng., 25, 336-343(2020). https://doi.org/10.1007/s12257-020-0055-0
  36. Kim, H. and Kim, J. H., "Adsorption of Cephalomannine Onto Sylopute: Isotherm, Kinetic and Thermodynamic Characteristics," Korean Chem. Eng. Res., 57, 219-224(2019).
  37. Nam, H. W. and Kim, J. H., "Characteristics of Microwaveassisted Drying of Plant Cells of Taxus chinensis for Moisture Removal," Appl. Chem. Eng., 31, 208-214(2020).
  38. Saha, P. and Chowdhury, S., "Insight Into Adsorption Thermodynamics," Prof. Mizutani Tadashi (Ed.) ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (2011).
  39. Kim, T. W. and Kim, J. H., "Development of An Acetone/water Fractional Precipitation Process for Purification of Paclitaxel From Plant Cell Cultures," Biotechnol. Bioprocess Eng., 21, 751-757(2016). https://doi.org/10.1007/s12257-016-0252-z
  40. Wohlgemuth, K., Kordylla, A., Ruether, F. and Schembecker, G., "Experimental Study of the Effect of Bubbles on Nucleation During Batch Cooling Crystallization," Chem. Eng. Sci., 64, 4155-4163(2009). https://doi.org/10.1016/j.ces.2009.06.041
  41. Schueller, B. S. and Yang, R. T., "Ultrasound Enhanced Adsorption and Desorption of Phenol on Activated Carbon and Polymeric Resin," Ind. Eng. Chem. Res., 40, 4912-4918(2001). https://doi.org/10.1021/ie010490j
  42. Royset, J. and Ryum, N., "Kinetics and Mechanisms of Precipitation in an Al-0.2 wt.% Sc Alloy," Mater. Sci. Eng. A, 396, 409-422(2005). https://doi.org/10.1016/j.msea.2005.02.015
  43. Lee, C. G. and Kim, J. H., "A Kinetic and Thermodynamic Study of Fractional Precipitation of Paclitaxel from Taxus chinensis," Process Biochem., 59, 216-222(2017). https://doi.org/10.1016/j.procbio.2017.05.016
  44. Kang, H. J. and Kim, J. H., "Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures Onto Sylopute," Biotechnol. Bioprocess Eng., 24, 513-521(2019). https://doi.org/10.1007/s12257-019-0001-1
  45. Lee, S. H. and Kim, J. H., "Kinetic and Thermodynamic Characteristics of Microwave-assisted Extraction for the Recovery of Paclitaxel from Taxus chinensis," Process Biochem., 76, 187-193 (2019). https://doi.org/10.1016/j.procbio.2018.11.010
  46. Bang, S. Y. and Kim, J. H., "Isotherm, Kinetics and Thermodynamic Studies on the Adsorption Behavior of 10-deacetylpacliTaxel on to Sylopute," Biotechnol. Bioprocess Eng., 22, 620-630 (2017). https://doi.org/10.1007/s12257-017-0247-4
  47. Shin, H. S. and Kim, J. H., "Isotherm, Kinetic and Thermodynamic Characteristics of Adsorption of Paclitaxel Onto Diaion HP-20," Process Biochem., 51, 917-924(2016). https://doi.org/10.1016/j.procbio.2016.03.013
  48. Dogan, M., Abak, H. and Alkan, M., "Adsorption of Methylene Blue Onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters," J. Hazard. Mater., 164, 172-181(2009). https://doi.org/10.1016/j.jhazmat.2008.07.155
  49. Celekli, A., Ilgun, G. and Bozkurt, H., "Sorption Equilibrium, Kinetic, Thermodynamic, and Desorption Studies of Reactive Red 120 on Chara contraria," Chem. Eng. J., 191, 228-235(2012). https://doi.org/10.1016/j.cej.2012.03.007