DOI QR코드

DOI QR Code

리튬이온전지의 사이클 수명 모델링

Modeling to Estimate the Cycle Life of a Lithium-ion Battery

  • 이재우 (아주대학교 에너지시스템학과) ;
  • 이동철 (아주대학교 에너지시스템학과) ;
  • 신치범 (아주대학교 에너지시스템학과) ;
  • 이소연 (한국에너지기술연구원 광주바이오에너지연구개발센터) ;
  • 오승미 (한국에너지기술연구원 광주바이오에너지연구개발센터) ;
  • 우중제 (한국에너지기술연구원 광주바이오에너지연구개발센터) ;
  • 장일찬 (한국에너지기술연구원 광주바이오에너지연구개발센터)
  • Lee, Jaewoo (Division of Energy System, Ajou University) ;
  • Lee, Dongcheul (Division of Energy System, Ajou University) ;
  • Shin, Chee Burm (Division of Energy System, Ajou University) ;
  • Lee, So-Yeon (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research) ;
  • Oh, Seung-Mi (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research) ;
  • Woo, Jung-Je (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research) ;
  • Jang, Il-Chan (Gwangju Bioenergy R&D Center, Korea Institute of Energy Research)
  • 투고 : 2021.01.29
  • 심사 : 2021.03.17
  • 발행 : 2021.08.01

초록

리튬이온전지의 성능을 최적화하기 위해서는 여러 열화 요소들을 고려한 성능 예측 모델링 기술이 필요하다. 본 연구에서는 리튬이온전지의 사이클 노화로 인한 방전 거동 및 사이클 수명 변화를 수학적으로 모델링하였다. 모델링의 신뢰성을 검증하기 위해 0.25C로 사이클 시험을 진행했으며, 30 사이클 간격으로 진행한 RPT (Reference performance test)를 통해 전기적 거동을 파악하였다. 기존의 리튬이온전지의 사이클 수명 예측 모델에 BOL (Beginning of life)에서 일어나는 현상 중 하나인 Break-in 메커니즘을 반영하여 수명예측 정확도를 개선시켰다. 모델에 근거하여 예측된 사이클 수명 변화는 실제 시험 결과와 잘 일치하였다.

In order to optimize the performance of a lithium-ion battery, a performance prediction modeling technique that considers various degradation factors is required. In this work, mathematical modeling was carried-out to predict the change in discharging behavior and cycle life, taking into account the cycle aging of lithium-ion batteries. In order to validate the modeling, a cycling test was performed at the charge/discharge rate of 0.25C, and discharging behavior was measured through RPT (Reference Performance Test) performed at 30 cycle intervals. The accuracy of cycle life prediction was improved by considering the break-in mechanism, one of the phenomena occurring in the BOL (beginning of life), in the model for predicting the cycle life of lithium-ion batteries. The predicted change in cycle life based on the model was in good agreement with the experimental results.

키워드

과제정보

본 연구는 한국에너지기술연구원 주요사업(C0-2424)과 교육부 한국연구재단(2018R1D1A1B07042519) 및 2021년도 산업통상자원부 산업기술평가관리원(KEIT; 20011379)의 연구비 지원에 의한 연구임.

참고문헌

  1. Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y. and Li, Z., "A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification," J. Power Sources., 251, 38-54(2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
  2. Doyle, M., Fuller, T. F. and Newman, J., "Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell," J. Electrochem. Soc., 140(6), 1526-1533(1993). https://doi.org/10.1149/1.2221597
  3. Arora, P., Doyle, M. and White, R. E., "Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes," J. Electrochem. Soc., 146(10), 3543-3553(1999). https://doi.org/10.1149/1.1392512
  4. Kwon, K. H., Shin, C. B., Kang, T. H. and Kim, C. S., "A Twodimensional Modeling of a Lithium-polymer Battery," J. Power Sources., 163(1), 151-157(2006). https://doi.org/10.1016/j.jpowsour.2006.03.012
  5. Kim, U. S., Shin, C. B. and Kim, C. S., "Effect of Electrode Configuration on the Thermal Behavior of a Lithium-polymer Battery," J. Power Sources., 180(2), 909-916(2008). https://doi.org/10.1016/j.jpowsour.2007.09.054
  6. Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S., "Modeling the Dependence of the Discharge Behavior of a Lithium-ion Battery on the Environmental Temperature," J. Power Sources., 158, A611-A618(2011).
  7. Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S., "Modelling the Thermal Behaviour of a Lithium-ion Battery During Charge," J. Power Sources., 196(11), 5115-5121(2011). https://doi.org/10.1016/j.jpowsour.2011.01.103
  8. Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S., "Modeling the Thermal Behaviors of a Lithium-Ion Battery during Constant-Power Discharge and Charge Operations," J. Electrochem. Soc., 160(6), A990-A995(2013). https://doi.org/10.1149/2.146306jes
  9. Yi, J., Kim, U. S., Shin, C. B., Han, T. and Park, S., "Modeling the Temperature Dependence of the Discharge Behavior of a Lithium-ion Battery in Low Environmental Temperature," J. Power Sources., 244, 143-148(2013). https://doi.org/10.1016/j.jpowsour.2013.02.085
  10. Yi, J., Lee, J., Shin, C. B., Han, T. and Park, S., "Modeling of the Transient Behaviors of a Lithium-ion Battery During Dynamic Cycling," J. Power Sources., 277, 379-386(2015). https://doi.org/10.1016/j.jpowsour.2014.12.028
  11. Yi, J., Koo, B., Shin, C. B., Han, T. and Park, S., "Modeling the Effect of Aging on the Electrical and Thermal Behaviors of a Lithium-ion Battery During Constant Current Charge and Discharge Cycling," Comput. Chem. Eng., 99, 31-39(2017). https://doi.org/10.1016/j.compchemeng.2017.01.006
  12. Lee, J., Yi, J., C. Shin, Yu, S. and Cho, W., "Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior," Energies, 6(11), 5597-5608(2013). https://doi.org/10.3390/en6115597
  13. Tiedemann, W. and Newman. J., "Current and Potential Distribution in Lead-acid Battery Plates," J. Electrochem. Soc., Princeton, NJ, 39-49(1979).
  14. Newman, J. and Tiedemann, W., "Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location," J. Electrochem. Soc., 140(7), 1961-1968(1993). https://doi.org/10.1149/1.2220746
  15. Gu, H., "Mathematical Analysis of a Zn/NiOOH Cell," J. Electrochem. Soc., 130(7), 1459-1464(1983). https://doi.org/10.1149/1.2120009
  16. Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K. and Staniewicz, R. J., "Aging Mechanism in Li Ion Cells and Calendar Life Predictions," J. Power Sources., 97, 13-21(2001).
  17. Bloom, I. et al., "An Accelerated Calendar and Cycle Life Study of Li-ion Cells," J. Power Sources., 101(2), 238-247(2001). https://doi.org/10.1016/S0378-7753(01)00783-2
  18. Smith, K., Saxon, A., Keyser, M., Lundstrom, B., Ziwei Cao and Roc, A., "Life Prediction Model for Grid-connected Li-ion Battery Energy Storage System," American Control Conference, May, Seattle (2017).
  19. Knehr, K. W., Hodson, T., Bommier, C., Davies, G., Kim, A. and Steingart, D. A., "Understanding Full-Cell Evolution and Nonchemical Electrode Crosstalk of Li-Ion Batteries," Joule, 2(6), 1146-1159(2018). https://doi.org/10.1016/j.joule.2018.03.016
  20. Wang, Y., Satoh, M., Arao, M., Matsumoto, M., Imai, H. and Nishihara, H., "High-energy, Long-cycle-life Secondary Battery with Electrochemically Pre-doped Silicon Anode," Sci. Rep, 10(1), 1-8(2020). https://doi.org/10.1038/s41598-019-56847-4