DOI QR코드

DOI QR Code

젖산 연료전지용 효소전극 제작 및 특성 분석

Fabrication and Characterization of Enzyme Electrode for Lactate Fuel Cell

  • 장연청 (경상국립대학교 화학공학과 및 그린에너지 연구소) ;
  • 김창준 (경상국립대학교 화학공학과 및 그린에너지 연구소)
  • Zhang, YanQing (Department of Chemical Engineering and RIGET, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical Engineering and RIGET, Gyeongsang National University)
  • 투고 : 2021.04.06
  • 심사 : 2021.05.05
  • 발행 : 2021.08.01

초록

본 연구는 땀에 존재하는 젖산을 연료로 사용하여 전기를 생산하는 웨어러블 연료전지용 고전력 젖산 산화효소 전극을 개발하는 데 그 목적이 있다. 유연성 있는 탄소종이 기반의 고정화효소 전극을 제작하고 평가하였다. 전해질 내 젖산농도 증가에 따라 젖산 산화효소(lactate oxidase, LOx)의 촉매작용으로 전류생성량이 증가하였다. 금 나노입자가 부착된 탄소종이에 고정화된 LOx가 탄소종이에 부착된 LOx보다 1.5배 많은 전류를 생성하였다. 빌리루빈 산화효소(bilirubin oxidase, BOD)가 고정화된 cathode는 질소로 퍼지(purge)된 전해질보다 산소로 포화된 전해질에서 높은 환원전류를 발생시켰다. 두 전극으로 구성된 연료전지를 제작하여 방전전류 변화에 따른 셀전압을 측정하였다. 방전 전류밀도 값이 66.7 ㎂/cm2에서 셀 전압은 0.5±0.0 V였고, 셀 전력량은 최대치인 33.8±2.5 ㎼/cm2를 나타내었다.

The study aimed to develop a high-power enzymatic electrode for a wearable fuel cell that generates electricity utilizing lactate present in a sweat as fuel. Anode was fabricated by immobilizing lactate oxidase (LOx) on flexible carbon paper. As the lactate concentration in the electrolyte solution increased, the amount of current generated by catalysis of lactate oxidase increased. The immobilized LOx generated 1.5-times greater oxidation current density in the presence of gold nanoparticles than carbon paper only. Bilirubin oxidase (BOD)-immobilized cathode generated a larger amount of reduction current in the electrolyte saturated with oxygen than purged with nitrogen. A fuel cell composed of two electrodes was fabricated and cell voltage was measured under different discharge current. At the discharge current density of 66.7 ㎂/cm2, the cell voltage was 0.5±0.0 V leading to maximum cell power density of 33.8±2.5 ㎼/cm2.

키워드

과제정보

이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433, 2017R1D1A1B03029032).

참고문헌

  1. Xia, X., Xia, H., Wu, R., Bai, L., Yan, L., Magner, E., Cosnier, S., Lojou, E., Zhu, Z. and Liu, A., "Tackling the Challenges of Enzymatic (Bio)Fuel Cells," Chem. Rev., 119, 9509-9558(2019). https://doi.org/10.1021/acs.chemrev.9b00115
  2. Bahar, T. and Yazici, S., "Assessment of Glucose Oxidase Based Enzymatic Fuel Cells Integrated with Newly Developed Chitosan Membranes by Electrochemical Impedance Spectroscopy," Electroanal., 32, 1304-1314(2020). https://doi.org/10.1002/elan.201900743
  3. Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., "Lactate in Human Sweat: A Critical Review of Research to the Present Day," J. Physiol. Sci., 62, 429-440(2012). https://doi.org/10.1007/s12576-012-0213-z
  4. He, W., Wang, C., Wang, H., Jian, M., Lu, W., Liang, X., Zhang, X., Yang, F. and Zhang, Y., "Integrated Textile Sensor Patch for Real-time and Multiplex Sweat Analysis," Sci. Adv., 5, eaax0649 (2019). https://doi.org/10.1126/sciadv.aax0649
  5. Chung, M., Fortunato, G. and Radacsi, N., "Wearable Flexible Sweat Sensors for Healthcare Monitoring; A Review," J. R. Soc. Interface, 16, 20190217(2019). https://doi.org/10.1098/rsif.2019.0217
  6. Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R., Furusawa, H., Matsui, H., Kumaki, D. and Tokito, S., "Noninvasive Sweat-lactate Biosensor Emplsoying A Hydrogel-Based Touch Pad," Sci. Rep., 9, 10102(2019). https://doi.org/10.1038/s41598-019-46611-z
  7. Currano, L., Sage, F.C., Hagedon, M., Hamilton, L., Patrone, J. and Gerasopoulos, K., "Wearable Sensor System for Detection of Lactate in Sweat," Sci. Rep., 8, 15890(2018). https://doi.org/10.1038/s41598-018-33565-x
  8. Anastasova, S., Crewther, B., Bembnowicz, P., Curto, V., IP, H. M. D., Rosa, B. and Yang, G.-Z., "A Wearable Multisensing Patch for Continuous Sweat Monitoring," Biosens. Bioelectron., 93, 139-145(2017). https://doi.org/10.1016/j.bios.2016.09.038
  9. Patterson, M. J., Galloway, S. D. R. and Nimmo, M. A., "Variations in Regional Sweat Composition in Normal Human Males," Exp. Physiol., 85(6), 869-875(2000). https://doi.org/10.1017/S0958067000020583
  10. Zhou, J.-Y., Liu, Y., Mo, X.-M., Han, C.-W., Meng, X.-J., Li, Q., Wang, Y.-J. and Zhang, A., "A Preliminary Study of the Military Applications and Future of Individual Exoskeletons," J. Phys., 1507, 102044(2020).
  11. Shitanda, I., Takamatsu, K., Niiyama, A., Mikawa, T., Hoshi, Y., Itagaki, M. and Tsujimura, S., "High-power lactate/O2 Enzymatic Biofuel Cell Based on Carbon Cloth Electrodes Modified with MgO-templated Carbon," J. Power Sources, 436, 226844(2019). https://doi.org/10.1016/j.jpowsour.2019.226844
  12. Wang, K., Du, L., Wei, Q., Zhang, J., Zhang, G., Xing, W. and Sun, S., "A Lactate/oxygen Biofuel Cell: The Coupled Lactate Oxidase Anode and PGM-free Fe-N-C Cathode," Appl. Mat. Inteface, 11, 42744-42750(2019). https://doi.org/10.1021/acsami.9b14486
  13. Bandodkar, A. J., You, J.-M., Kim, N.-H., Gu, Y., Kumar, R., Mohan, A. M. V., Kurniawan, J., Imani, S., Nakagawa, T., Parish, B., Parthasarathy, M., Mercier, P. P, Xu, S. and Wang, J., "Soft, Stretchable, High Power Density Electronic Skin-based Biofuel Cells for Scavenging Energy from Human Sweat," Energy Environ. Sci., 10, 1581-1589(2017). https://doi.org/10.1039/C7EE00865A
  14. Gamero, M., Pariente, F., Lorenzo, E. and Alonso, C., "Nanostructured Rough Gold Electrodes for the Development of Lactate Oxidase-Based Biosensors," Biosens. Bioelectron., 25, 2038-2044(2010). https://doi.org/10.1016/j.bios.2010.01.032
  15. Jahn, B., Jonasson, N. S. W., Hu, H., Singer, H., Pol, A., Good, N. M., Op den Camp, H. J. M., Martinez-Gomez, N. C. and Daumann, L. J., "Understanding the Chemistry of the Artificial Electron Acceptors PES, PMS, DCPIP and Wurster's Blue in Methanol Dehydrogenase Assays," J. Biol. Inorg. Chem, 25, 199-212(2020). https://doi.org/10.1007/s00775-020-01752-9
  16. Loew, N., Tsugawa, W., Nagae, D., Kojima, K. and Sode, K., "Mediator Preference of Two Different FAD-dependent Glucose Dehydrogenase Employed in Disposable Enzyme Glucose Sensors," Sensors, 17, 2636(2017).
  17. McKee, T. and Mckee J.R., Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
  18. Basso, A. and Serban S., "Industrial Applications of Immobilized Enzymes-A Review," Mol. Catal., 479, 110607(2019). https://doi.org/10.1016/j.mcat.2019.110607
  19. Schlesinger, O., pasi, M., Dandela, R., Meijter, M. M. and Alfonta, L., "Electron Trasfer Rate Analysis of A Site-Specifically Wired Copper Oxidase," Phys. Chem. Chem. Phys., 20, 6159-6166(2018). https://doi.org/10.1039/C8CP00041G
  20. Bollella, P. and Katz, E., "Enzyme-Based Biosensors: Tackling Electron Transfer Issues," Sensors, 20, 3517(2020). https://doi.org/10.3390/s20123517
  21. Deka, J., Paul, A. and Chattopadhyay, A., "Modulating Enzymatic Activity in the Presence of Gold Nanoparticles," RSC Adv., 2, 4736-4745(2012). https://doi.org/10.1039/c2ra20056b
  22. Lee, S. J., "A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor," Appl. Chem. Eng., 27, 185-189(2016). https://doi.org/10.14478/ace.2016.1009
  23. Gaspar, S., Brinduse, E. and Vasilescu, A., "Electrochemical Evaluation of Laccase Activity in Must," Chemosensors, 8, 126(2020). https://doi.org/10.3390/chemosensors8040126
  24. Takahashi, Y., Kitazumi, Y., Shirai, O. and Kano, K., "Improved Direct Electron Transfer-Type Bioelectrocatalysis of Bilirubin Oxidase Using Thiol-Modified Gold Nanoparticles on Mesoporous Carbon Electrode," J. Electroanal. Chem., 832, 158-164(2019). https://doi.org/10.1016/j.jelechem.2018.10.048
  25. Pankratov, D. V. et al., "Impact of Surface Modification with Gold Nanopaticles on the Bioelectrocatalytic Parameters of Immobilized Bilirubin Oxidase," Acta Nature, 6(1), 102-106(2014). https://doi.org/10.32607/20758251-2014-6-1-102-106
  26. Kannan, P., Chen, H., Lee, V. T.-W., Kim, D.-H., "Highly Sensitive Amperometric Detection of Bilirubin Using Enzyme and Gold Nanoparticles on Sol-Gel Film Modified Electrode," Talanta, 86, 400-407(2011). https://doi.org/10.1016/j.talanta.2011.09.034
  27. Paradowska, E., Arkusz, K. and Pijanowska, D. G., "Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes," Materials, 13, 4269(2020). https://doi.org/10.3390/ma13194269
  28. Stine, K. J., "Enzyme Immobilization on Nanoporous Gold: A Review," Biochemistry Insight, 10, 1-12(2017). https://doi.org/10.1177/1178626417748607
  29. Gamella, M., Koushanpour, A. and Katz, E., "Biofuel Cells-Activation of Micro- and Macro- Electronic Devices," Bioelectrochemistry, 119, 33-42(2018). https://doi.org/10.1016/j.bioelechem.2017.09.002
  30. Sharma, T., Naik, S., Gopal, A. and Zhang, X. J., "Emerging Trends in Bioenergy Harvesters for Chronic Powered Implants," MRS Energy Sustain., 2, E7(2015).
  31. Payne, M. E., Zamarayeva, A., Pister, V. I., Yamamoto, N. A. D. and Arias, A. C., "Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements," Sci. Rep., 9, 13720(2019). https://doi.org/10.1038/s41598-019-49689-7