DOI QR코드

DOI QR Code

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor

형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징

  • Jang, Yoon-Kwan (Department of Integrated Biological Science, Pusan National University) ;
  • Suh, Jung-Soo (Department of Integrated Biological Science, Pusan National University) ;
  • Suk, Myungeun (Department of Mechanical Engineering, IT Convergence College of Components and Materials Engineering, Dong-Eui University) ;
  • Kim, Tae-Jin (Department of Integrated Biological Science, Pusan National University)
  • 장윤관 (부산대학교 자연과학대학 생명시스템학과) ;
  • 서정수 (부산대학교 자연과학대학 생명시스템학과) ;
  • 석명은 (동의대학교 IT융합부품소재공과대학 기계공학과) ;
  • 김태진 (부산대학교 자연과학대학 생명시스템학과)
  • Received : 2021.01.13
  • Accepted : 2021.03.17
  • Published : 2021.08.01

Abstract

Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

캐드헤린-카테닌 복합체는 세포의 부착 접합부에서 힘의 전달에 중요한 역할을 하는 것으로 생각된다. 그러나 기계적 힘 신호를 시각화 하고 감지하는 적절한 도구의 부재로, 캐드헤린-카테닌 복합체가 세포 간 접합에서 힘 전달을 조절하는 기본 메커니즘은 아직 파악하기가 어렵다. 본 연구에서는 형광공명에너지전이를 기반으로 설계된 알파카테닌 센서를 사용하여 캐드헤린에 의해 매개되는 힘 전달을 시각화 하였다. 이러한 결과는 알파카테닌이 세포-세포 접합부에서 캐드헤린 매개 기계적에너지변환(mechanotransduction) 경로의 핵심적인 힘 트랜스듀서(force transducer) 임을 보여준다. 본 연구는 향후 기계적 힘의 세포-세포 상호간의 의사소통에 미치는 영향과 생리학적/병리학적 현상과의 관계를 연구하는 데 중요한 이해를 제공할 것이라 본다.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Armingol, E., Officer, A., Harismendy, O. and Lewis, N. E., "Deciphering Cell-cell Interactions and Communication From Gene Expression," Nat. Rev. Genet., 1-18(2020).
  2. Mittelbrunn, M. and Sanchez-Madrid, F., "Intercellular Communication: Diverse Structures for Exchange of Genetic Information," Nat. Rev. Mol. Cell Biol., 13(5), 328-335(2012). https://doi.org/10.1038/nrm3335
  3. Meng, W. and Takeichi, M., "Adherens Junction: Molecular Architecture and Regulation," Cold Spring Harbor Perspect. Biol., 1(6), a002899(2009). https://doi.org/10.1101/cshperspect.a002899
  4. Vining, K. H. and Mooney, D. J., "Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration," Nat. Rev. Mol. Cell Biol., 18(12), 728-742(2017). https://doi.org/10.1038/nrm.2017.108
  5. Leckband, D. E. and De Rooij, J., "Cadherin Adhesion and Mechanotransduction," Annu. Rev. Cell Dev. Biol., 30, 291-315 (2014). https://doi.org/10.1146/annurev-cellbio-100913-013212
  6. Ladoux, B., Nelson, W. J., Yan, J., and Mege, R. M., "The Mechanotransduction Machinery at Work at Adherens Junctions," Integr. Biol., 7(10), 1109-1119(2015). https://doi.org/10.1039/C5IB00070J
  7. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. and Shibata, M., "α-Catenin as a Tension Transducer That Induces Adherens Junction Development," Nat. Cell Biol., 12(6), 533-542(2010). https://doi.org/10.1038/ncb2055
  8. Mei, L., de Los Reyes, S. E., Reynolds, M. J., Leicher, R., Liu, S. and Alushin, G. M., "Molecular Mechanism for Direct Actin Force-sensing by α-catenin," Elife, 9, e62514(2020). https://doi.org/10.7554/eLife.62514
  9. Leckband, D. E., in Chien S., Engler A., Wang P. (Ed.), Cadherins in Mechanotransduction. In Molecular and Cellular Mechanobiology, New York, 57-80(2016).
  10. McCrea, P. D., Maher, M. T. and Gottardi, C. J., "Nuclear Signaling From Cadherin Adhesion Complexes," Curr. Top. Dev. Biol., 112, 129-196(2015). https://doi.org/10.1016/bs.ctdb.2014.11.018
  11. Ishiyama, N., Sarpal, R., Wood, M. N., Barrick, S. K., Nishikawa, T., Hayashi, H., Kobb, A. B., Flozak, A. S., Yemelyanov, A., Fernandez-Gonzalez, R., Yonemura, S., Leckband, D. E., Gottardi, C. J., Tepass, U. and Ikura, M., "Force-dependent Allostery of the α-catenin Actin-binding Domain Controls Adherens Junction Dynamics and Functions," Nat. Commun., 9(1), 1-17(2018). https://doi.org/10.1038/s41467-017-02088-w
  12. Kobielak, A. and Fuchs, E., "α-catenin: at the Junction of Intercellular Adhesion and Actin Dynamics," Nat. Rev. Mol. Cell Biol., 5(8), 614-625(2004). https://doi.org/10.1038/nrm1433
  13. Kim, T. J., Zheng, S., Sun, J., Muhamed, I., Wu, J., Lei, L., Kong, X., Leckband, D. E. and Wang, Y., "Dynamic Visualization of αcatenin Reveals Rapid, Reversible Conformation Switching Between Tension States," Curr. Biol., 25(2), 218-224(2015). https://doi.org/10.1016/j.cub.2014.11.017
  14. Kim, T. J., Seong, J., Ouyang, M., Sun, J., Lu, S., Hong, J. P., Wang, N. and Wang, Y., "Substrate Rigidity Regulates Ca2+ Oscillation via RhoA Pathway in Stem Cells," J. Cell Physiol., 218(2), 285-293(2009). https://doi.org/10.1002/jcp.21598
  15. Kim, T. J., Sun, J., Lu, S., Qi, Y. X. and Wang, Y., "Prolonged Mechanical Stretch Initiates Intracellular Calcium Oscillations in Human Mesenchymal Stem Cells," PLoS One, 9(10), e109378(2014). https://doi.org/10.1371/journal.pone.0109378
  16. Kim, T. J., Sun, J., Lu, S., Zhang, J. and Wang, Y., "The Regulation of β-adrenergic Receptor-mediated PKA Activation by Substrate Stiffness via Microtubule Dynamics in Human MSCs," Biomaterials, 35(29), 8348-8356(2014). https://doi.org/10.1016/j.biomaterials.2014.06.018
  17. Kim, T. J., Lei, L., Seong, J., Suh, J. S., Jang, Y. K., Jung, S. H., Sun, J., Kim, D. H. and Wang, Y., "Matrix Rigidity-Dependent Regulation of Ca2+ at Plasma Membrane Microdomains by FAK Visualized by Fluorescence Resonance Energy Transfer," Adv. Sci., 6(4), 1801290(2019). https://doi.org/10.1002/advs.201801290
  18. Schwarz, U. S. and Soine, J. R., "Traction Force Microscopy on Soft Elastic Substrates: A Guide to Recent Computational Advances," Bioch. Biophys. Acta., 1853(11), 3095-3104(2015). https://doi.org/10.1016/j.bbamcr.2015.05.028
  19. Poh, Y. C., Shevtsov, S. P., Chowdhury, F., Wu, D. C., Na, S., Dundr, M. and Wang, N., "Dynamic Force-induced Direct Dissociation of Protein Complexes in a Nuclear Body in Living Cells," Nat. Commun., 3(1), 1-10(2012).
  20. Liu, B., Lu, S., Hu, Y. L., Liao, X., Ouyang, M. and Wang, Y., "RhoA and Membrane Fluidity Mediates the Spatially Polarized Src/FAK Activation in Response to Shear Stress," Sci. Rep., 4(1), 1-8(2014).
  21. Wang, Y., Chang, J., Li, Y. C., Li, Y. S., Shyy, J. Y. J. and Chien, S., "Shear Stress and VEGF Activate IKK via the Flk-1/Cbl/Akt Signaling Pathway," Am. J. Physiol. Heart Circ. Physiol., 286(2), H685-H692(2004). https://doi.org/10.1152/ajpheart.00237.2003
  22. Liu, B., Kim, T. J. and Wang, Y., "Live Cell Imaging of Mechanotransduction," J. R. Soc. Interface., 7(suppl_3), S365-S375(2010).
  23. Thomas, W. A., Boscher, C., Chu, Y. S., Cuvelier, D., Martinez-Rico, C., Seddiki, R., Heysch, J., Ladoux, B., Thiery, J. P., Mege, R. M. and Dufour, S., "α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength," J. Biol. Chem., 288(7), 4957-4969(2013). https://doi.org/10.1074/jbc.M112.403774
  24. Vermeulen, S. J., Bruyneel, E. A., Bracke, M. E., De Bruyne, G. K., Krist'l, M. V., Vleminckx, K. L., Berx, G. J., van Roy, F. M., and Mareel, M. M., "Transition from the Noninvasive to the Invasive Phenotype and Loss of α-catenin in Human Colon Cancer Cells," Cancer Res., 55(20), 4722-4728(1995).
  25. Style, R. W., Boltyanskiy, R., German, G. K., Hyland, C., MacMinn, C. W., Mertz, A. F., Wilen, L. A., Xu, Y. and Dufresne, E. R., "Traction Force Microscopy in Physics and Biology," Soft Matter, 10(23), 4047-4055(2014). https://doi.org/10.1039/c4sm00264d