Acknowledgement
이 성과는 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433, 2017R1D1A1B03029032).
References
- Xia, X., Xia, H., Wu, R., Bai, L., Yan, L., Magner, E., Cosnier, S., Lojou, E., Zhu, Z. and Liu, A., "Tackling the Challenges of Enzymatic (Bio)Fuel Cells," Chem. Rev., 119, 9509-9558(2019). https://doi.org/10.1021/acs.chemrev.9b00115
- Bahar, T. and Yazici, S., "Assessment of Glucose Oxidase Based Enzymatic Fuel Cells Integrated with Newly Developed Chitosan Membranes by Electrochemical Impedance Spectroscopy," Electroanal., 32, 1304-1314(2020). https://doi.org/10.1002/elan.201900743
- Derbyshire, P. J., Barr, H., Davis, F. and Higson, S. P., "Lactate in Human Sweat: A Critical Review of Research to the Present Day," J. Physiol. Sci., 62, 429-440(2012). https://doi.org/10.1007/s12576-012-0213-z
- He, W., Wang, C., Wang, H., Jian, M., Lu, W., Liang, X., Zhang, X., Yang, F. and Zhang, Y., "Integrated Textile Sensor Patch for Real-time and Multiplex Sweat Analysis," Sci. Adv., 5, eaax0649 (2019). https://doi.org/10.1126/sciadv.aax0649
- Chung, M., Fortunato, G. and Radacsi, N., "Wearable Flexible Sweat Sensors for Healthcare Monitoring; A Review," J. R. Soc. Interface, 16, 20190217(2019). https://doi.org/10.1098/rsif.2019.0217
- Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R., Furusawa, H., Matsui, H., Kumaki, D. and Tokito, S., "Noninvasive Sweat-lactate Biosensor Emplsoying A Hydrogel-Based Touch Pad," Sci. Rep., 9, 10102(2019). https://doi.org/10.1038/s41598-019-46611-z
- Currano, L., Sage, F.C., Hagedon, M., Hamilton, L., Patrone, J. and Gerasopoulos, K., "Wearable Sensor System for Detection of Lactate in Sweat," Sci. Rep., 8, 15890(2018). https://doi.org/10.1038/s41598-018-33565-x
- Anastasova, S., Crewther, B., Bembnowicz, P., Curto, V., IP, H. M. D., Rosa, B. and Yang, G.-Z., "A Wearable Multisensing Patch for Continuous Sweat Monitoring," Biosens. Bioelectron., 93, 139-145(2017). https://doi.org/10.1016/j.bios.2016.09.038
- Patterson, M. J., Galloway, S. D. R. and Nimmo, M. A., "Variations in Regional Sweat Composition in Normal Human Males," Exp. Physiol., 85(6), 869-875(2000). https://doi.org/10.1017/S0958067000020583
- Zhou, J.-Y., Liu, Y., Mo, X.-M., Han, C.-W., Meng, X.-J., Li, Q., Wang, Y.-J. and Zhang, A., "A Preliminary Study of the Military Applications and Future of Individual Exoskeletons," J. Phys., 1507, 102044(2020).
- Shitanda, I., Takamatsu, K., Niiyama, A., Mikawa, T., Hoshi, Y., Itagaki, M. and Tsujimura, S., "High-power lactate/O2 Enzymatic Biofuel Cell Based on Carbon Cloth Electrodes Modified with MgO-templated Carbon," J. Power Sources, 436, 226844(2019). https://doi.org/10.1016/j.jpowsour.2019.226844
- Wang, K., Du, L., Wei, Q., Zhang, J., Zhang, G., Xing, W. and Sun, S., "A Lactate/oxygen Biofuel Cell: The Coupled Lactate Oxidase Anode and PGM-free Fe-N-C Cathode," Appl. Mat. Inteface, 11, 42744-42750(2019). https://doi.org/10.1021/acsami.9b14486
- Bandodkar, A. J., You, J.-M., Kim, N.-H., Gu, Y., Kumar, R., Mohan, A. M. V., Kurniawan, J., Imani, S., Nakagawa, T., Parish, B., Parthasarathy, M., Mercier, P. P, Xu, S. and Wang, J., "Soft, Stretchable, High Power Density Electronic Skin-based Biofuel Cells for Scavenging Energy from Human Sweat," Energy Environ. Sci., 10, 1581-1589(2017). https://doi.org/10.1039/C7EE00865A
- Gamero, M., Pariente, F., Lorenzo, E. and Alonso, C., "Nanostructured Rough Gold Electrodes for the Development of Lactate Oxidase-Based Biosensors," Biosens. Bioelectron., 25, 2038-2044(2010). https://doi.org/10.1016/j.bios.2010.01.032
- Jahn, B., Jonasson, N. S. W., Hu, H., Singer, H., Pol, A., Good, N. M., Op den Camp, H. J. M., Martinez-Gomez, N. C. and Daumann, L. J., "Understanding the Chemistry of the Artificial Electron Acceptors PES, PMS, DCPIP and Wurster's Blue in Methanol Dehydrogenase Assays," J. Biol. Inorg. Chem, 25, 199-212(2020). https://doi.org/10.1007/s00775-020-01752-9
- Loew, N., Tsugawa, W., Nagae, D., Kojima, K. and Sode, K., "Mediator Preference of Two Different FAD-dependent Glucose Dehydrogenase Employed in Disposable Enzyme Glucose Sensors," Sensors, 17, 2636(2017).
- McKee, T. and Mckee J.R., Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
- Basso, A. and Serban S., "Industrial Applications of Immobilized Enzymes-A Review," Mol. Catal., 479, 110607(2019). https://doi.org/10.1016/j.mcat.2019.110607
- Schlesinger, O., pasi, M., Dandela, R., Meijter, M. M. and Alfonta, L., "Electron Trasfer Rate Analysis of A Site-Specifically Wired Copper Oxidase," Phys. Chem. Chem. Phys., 20, 6159-6166(2018). https://doi.org/10.1039/C8CP00041G
- Bollella, P. and Katz, E., "Enzyme-Based Biosensors: Tackling Electron Transfer Issues," Sensors, 20, 3517(2020). https://doi.org/10.3390/s20123517
- Deka, J., Paul, A. and Chattopadhyay, A., "Modulating Enzymatic Activity in the Presence of Gold Nanoparticles," RSC Adv., 2, 4736-4745(2012). https://doi.org/10.1039/c2ra20056b
- Lee, S. J., "A Study on Surface Modification of Nanorod Electrodes for Highly Sensitive Nano-biosensor," Appl. Chem. Eng., 27, 185-189(2016). https://doi.org/10.14478/ace.2016.1009
- Gaspar, S., Brinduse, E. and Vasilescu, A., "Electrochemical Evaluation of Laccase Activity in Must," Chemosensors, 8, 126(2020). https://doi.org/10.3390/chemosensors8040126
- Takahashi, Y., Kitazumi, Y., Shirai, O. and Kano, K., "Improved Direct Electron Transfer-Type Bioelectrocatalysis of Bilirubin Oxidase Using Thiol-Modified Gold Nanoparticles on Mesoporous Carbon Electrode," J. Electroanal. Chem., 832, 158-164(2019). https://doi.org/10.1016/j.jelechem.2018.10.048
- Pankratov, D. V. et al., "Impact of Surface Modification with Gold Nanopaticles on the Bioelectrocatalytic Parameters of Immobilized Bilirubin Oxidase," Acta Nature, 6(1), 102-106(2014). https://doi.org/10.32607/20758251-2014-6-1-102-106
- Kannan, P., Chen, H., Lee, V. T.-W., Kim, D.-H., "Highly Sensitive Amperometric Detection of Bilirubin Using Enzyme and Gold Nanoparticles on Sol-Gel Film Modified Electrode," Talanta, 86, 400-407(2011). https://doi.org/10.1016/j.talanta.2011.09.034
- Paradowska, E., Arkusz, K. and Pijanowska, D. G., "Comparison of Gold Nanoparticles Deposition Methods and Their Influence on Electrochemical and Adsorption Properties of Titanium Dioxide Nanotubes," Materials, 13, 4269(2020). https://doi.org/10.3390/ma13194269
- Stine, K. J., "Enzyme Immobilization on Nanoporous Gold: A Review," Biochemistry Insight, 10, 1-12(2017). https://doi.org/10.1177/1178626417748607
- Gamella, M., Koushanpour, A. and Katz, E., "Biofuel Cells-Activation of Micro- and Macro- Electronic Devices," Bioelectrochemistry, 119, 33-42(2018). https://doi.org/10.1016/j.bioelechem.2017.09.002
- Sharma, T., Naik, S., Gopal, A. and Zhang, X. J., "Emerging Trends in Bioenergy Harvesters for Chronic Powered Implants," MRS Energy Sustain., 2, E7(2015).
- Payne, M. E., Zamarayeva, A., Pister, V. I., Yamamoto, N. A. D. and Arias, A. C., "Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements," Sci. Rep., 9, 13720(2019). https://doi.org/10.1038/s41598-019-49689-7