DOI QR코드

DOI QR Code

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor

전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성

  • Kim, Young-Ji (Department of Cosmetic Science, Hannam University) ;
  • Kim, Soo-Yeoun (Department of Cosmetic Science, Hannam University) ;
  • Choi, Seong-Ho (Department of Cosmetic Science, Hannam University)
  • 김영지 (한남대학교 코스메틱사이언스학과) ;
  • 김수연 (한남대학교 코스메틱사이언스학과) ;
  • 최성호 (한남대학교 코스메틱사이언스학과)
  • Received : 2021.06.04
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).

본 연구에서는 싸이크론 헥산에서 PVC와 트리에틸디아민 (TEDA), 1,4-디메틸피페라진(DMP) 및 1,4-비스(이미다졸-1-일메틸)벤젠을 각각 치환반응시켜서3가지 형태의 PVC 멤브레인, AEM-1, AEM-2, and AEM-3를 제조하였다. AEM-1, AEM-2, and AEM-3멤브레인의 성공적인 제조 여부를 이온전도도(S/cm), 물함수율 (%), 접촉각, 이온교환능력 (meq/g), 열분석, SEM 및 XPS 분석 통하여 확인하였다. 또한, 제조된 가교 음이온 PVC멤브레인을 사용하여 유기전해질에서 전기화학 캐퍼시터 실험을 수행한 결과, 제조된 AEM-1, AEM-2 AEM-3 멤브레인의 경우 유기전해질에서 충/방전실험결과 매우 안정적임을 확인 할 수 있었다. 이러한 결과로 치환반응 후에 용매 캐시팅법으로 제조된 PVC기반 멤브레인 (AEM-1, AEM-2, 및 AEM-3)의 경우 유기전기화학캐퍼시터 (슈퍼캐퍼시터)용 분리막으로 사용될 수 있다.

Keywords

Acknowledgement

This work was supported by the Korean Innovation Foundation (2020-DD-RD-0124-01-201).

References

  1. T. Mohammadi, M. Skyllas-Kazacos. "Characterization of novel composite membrane for redox flow battery applications." Journal of Membrane Science, Vol. 98, pp 77-87, (1995). https://doi.org/10.1016/0376-7388(94)00178-2
  2. J.Y. Xi, Z.H. Wu, X.P. Qiu ,L.Q. Chen. "Nafion/SiO2 hybrid membrane for vanadium redox flow battery." Journal of Power Sources, Vol. 166, pp 531-536, (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  3. X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen. "Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions." Journal of Membrane Science Vol. 341, pp 149-154, (2009). https://doi.org/10.1016/j.memsci.2009.05.051
  4. J.Y. Xi, Z.H. Wu, X.G. Teng, Y.T. Zhao, L.Q. Chen, X.P. Qiu. "Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries." Journal of Materials Chemistry, Vol. 12, pp 1232-1238, (2008).
  5. X.L. Luo, Z.Z. Lu, J.Y. Xi, Z.H. Wu, W.T. Zhu, L.Q. Chen, X.P. Qiu. "nfluences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries." Journal of Physical Chemistry B, Vol. 109, pp 20310-20314, (2005). https://doi.org/10.1021/jp054092w
  6. S.H. Lee, S.H. Choi, S. A. Gopalan, K. P. Lee, A. I. Gopalan. "Preparation of new self-humidifying composite membrane by incorporating graphene and phosphotungstic acid into sulfonated poly(ether ether ketone) film." International Journal of Hydrogen Energy, Vol. 39, pp 17162-17177, (2014). https://doi.org/10.1016/j.ijhydene.2014.07.181
  7. J. Xu, Z. L. Xu, "Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent." Journal of Membrane Science, Vol. 208, pp 203-212, (2002). https://doi.org/10.1016/S0376-7388(02)00261-2
  8. M. Khayet, M.C. G. Payo, F.A. Qusay , M.A. Zubaidy. "Structural and performance studies of poly(vinyl chloride) hollow fiber membranes prepared at different air gap lengths." Journal of Membrane Science, Vol. 330, pp 30-39, (2009). https://doi.org/10.1016/j.memsci.2008.12.020
  9. S.H. Mei, C.H. Xiao, X. Hu. "Preparation of porous PVC membrane via a phase inversion method from PVC/DMAc/water/additives." Journal of Applied Polymer Science, Vol. 120, pp 557-562, (2011). https://doi.org/10.1002/app.33219
  10. M. Aghajania, A. R. Greenberg, Y. Ding, "Thin film composite membranes: Does the porous support truly have negligible resistance?" Journal of Membrane Science, Vol. 609, 118207, (2020). https://doi.org/10.1016/j.memsci.2020.118207
  11. D. Fraenkel, "Electrolytic Nature of Aqueous Sulfuric Acid. 1. Activity", Journal of Physical Chemistry B, Vol. 116, No.10, pp 11662-11677, (2012). https://doi.org/10.1021/jp3060334
  12. T. Han, Y. Shi, Z. Yu, B. Shin, M. Lanza, "Potassium Hydroxide Mixed with Lithium Hydroxide: An Advanced Electrolyte for Oxygen Evolution Reaction", RRL Solar, Vol. 3, No. 1, pp 1980-2367, (2019).
  13. L. Xia, L. Yu, D. Hu, G.Z. Chen, "Electrolytes for electrochemical energy storage", Materials Chemistry Frontiers" Materials Chemistry Frontiers, Vol. 1, No. 1, pp 584-618, (2017). https://doi.org/10.1039/C6QM00169F
  14. E. Kovalska, C. Kocabas, "Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid", Materialstoday Communications, Vol. 7, No. 1, pp 155-160, (2016).
  15. J. Q. Huang, X. Guo, X. Lin, Y. Zhu, B. Zhang, "Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries", A Science Partner Journal, Vol. 10, No. 1, pp 2639-5274, (2019).
  16. A. Mohammed, G. A. E. E. Yousif, A. A. Ahmed, D. S. Ahmed, M. H. Alotaibi, "Protection of Poly(Vinyl Chloride) Films against Photodegradation Using Various Valsartan Tin Complexes", Polymers, Vol. 12, No. 969, pp. 1-8, (2020).
  17. Y. Qi, X. Yin, J. Zhang, "Transparent and heat-insulation plasticized polyvinyl chloride (PVC) thin film with solar spectrally selective property", Solar Energy Materials and Solar Cells, Vol. 151, pp 30-35, (2016). https://doi.org/10.1016/j.solmat.2016.02.016