DOI QR코드

DOI QR Code

Conservative Upwind Correction Method for Scalar Linear Hyperbolic Equations

  • Kim, Sang Dong (Gyeongbuk Provincial College, Department of Mathematics, University of Wisconsin-Whitewater) ;
  • Lee, Yong Hun (Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University) ;
  • Shin, Byeong Chun (Department of Mathematics, Chonnam National University)
  • 투고 : 2018.04.19
  • 심사 : 2021.06.01
  • 발행 : 2021.06.30

초록

A conservative scheme for solving scalar hyperbolic equations is presented using a quadrature rule and an ODE solver. This numerical scheme consists of an upwind part, plus a correction part which is derived by introducing a new variable for the given hyperbolic equation. Furthermore, the stability and accuracy of the derived algorithm is shown with numerous computations.

키워드

참고문헌

  1. D. Estep, A modified equation for dispersive difference schemes, Appl. Number. Math., 17(1995), 299-309. https://doi.org/10.1016/0168-9274(95)00035-S
  2. S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 47(1959), 271-306.
  3. D. F. Griffiths and J. M. Sanz-Serna, On the scope of the method of modified equations, SIAM J. Sci. Statist. Comput., 7(1986), 994-1008. https://doi.org/10.1137/0907067
  4. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49(1983), 357-393. https://doi.org/10.1016/0021-9991(83)90136-5
  5. G. Hedstrom, Models of difference schemes for ut + ux = 0 by partial differential equations, Math. Comp., 29(1975), 969-977. https://doi.org/10.1090/S0025-5718-1975-0388797-4
  6. C. Hirsch, Numerical computation of internal and external flows, 2, Wiley, 1990.
  7. N. Jiang, On the convergence of fully-discrete high-resolution schemes with van Leer's flux limiter for conservation laws, Methods Appl. Anal., 16(3)(2009), 403-422. https://doi.org/10.4310/MAA.2009.v16.n3.a8
  8. S. Konyagin, B. Popov and O. Trifonov, On convergence of minmod-type schemes, SAIM J. Numer. Anal., 42(5)(2005), 1978-1997. https://doi.org/10.1137/S0036142903423861
  9. C. B. Laney, Computational gasdynamics, Cambridge University Press, Cambridge, 1998.
  10. Y. H. Lee and S. D. Kim, Note on a classical conservative method for scalar hyperbolic equations, Kyungpook Math. J., 56(2016), 1179-1189. https://doi.org/10.5666/KMJ.2016.56.4.1179
  11. B. van Leer, Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method, J. Comput. Phys., 32(1979), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  12. B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-Oscher and Roe, SIAM J. Sci. Statist. Comput., 5(1984), 1-20. https://doi.org/10.1137/0905001
  13. B. van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 23(1997), 361-370.
  14. R. J. LeVeque, Numerical methods for conservation laws, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, 1992.
  15. R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
  16. B. Popov, and O. Trifonov, Order of convergence of second order schemes based on the minmod limiter, Math. Comp., 75(2006), 1735-1753. https://doi.org/10.1090/S0025-5718-06-01875-8
  17. P. L. Roe, Some contributions to the modelling of discontinuous flows, Large-scale computations in fluid mechanics, Part 2 (La Jolla, Calif., 1983), 163-193, Lectures in Appl. Math. 22-2, Amer. Math. Soc., Providence, RI, 1985.
  18. C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comp., 49(1987), 105-121. https://doi.org/10.1090/S0025-5718-1987-0890256-5
  19. P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SAIM J. Numer. Anal., 21(1984), 995-1011. https://doi.org/10.1137/0721062
  20. R. F. Warming and B. J. Hyett, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., 14(1974), 159-179. https://doi.org/10.1016/0021-9991(74)90011-4