DOI QR코드

DOI QR Code

Generalized 𝜓-Geraghty-Zamfirescu Contraction Pairs in b-metric Spaces

  • Morales, Jose R. (Departamento de Matematicas, Universidad de Los Andes) ;
  • Rojas, Edixon M. (Departamento de Matematicas, Universidad Nacional de Colombia)
  • 투고 : 2020.09.13
  • 심사 : 2021.01.19
  • 발행 : 2021.06.30

초록

The purpose of this paper is to introduce a class of contractive pairs of mappings satisfying a Zamfirescu-type inequality, but controlled with altering distance functions and with parameters satisfying the so-called Geraghty condition in the framework of b-metric spaces. For this class of mappings we prove the existence of points of coincidence, the convergence and stability of the Jungck, Jungck-Mann and Jungck-Ishikawa iterative processes and the existence and uniqueness of its common fixed points.

키워드

과제정보

The authors are thankful to the referee for the very constructive comments and suggestions that led to an improvement of the paper, particularly, in regards to the consideration of the Jungck-Ishikawa iteration.

참고문헌

  1. M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270(2002), 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
  2. A. A. Abdelhakim, A convexity of functions on convex metric spaces of Takahashi and applications, J. Egyptian Math. Soc., 24(2016), 348-354. https://doi.org/10.1016/j.joems.2015.10.003
  3. A. Aghajani, M. Abbas and J. R. Rushaw, Common fixed point of generalized weak contractive mappings in partially ordered b-metric space, Math. Slovaca, 64(4)(2014), 941-960. https://doi.org/10.2478/s12175-014-0250-6
  4. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3(1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  5. V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics 1912, Springer, 2007.
  6. S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25(1972), 727-730.
  7. M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
  8. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, (1976), 261-263.
  9. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math., Math. Sci., 9(4)(1986), 771-779. https://doi.org/10.1155/S0161171286000935
  10. G. Jungck and B. E. Rhoades, Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2)(2006), 287-296.
  11. R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60(1968), 71-76.
  12. M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30(1984), 1-9. https://doi.org/10.1017/S0004972700001659
  13. J. R. Morales and E. M. Rojas, Contractive mappings of rational type controlled by minimal requirements functions, Afr. Mat., 27(1-2)(2016), 65-77. https://doi.org/10.1007/s13370-015-0319-6
  14. J. R. Morales, E. M. Rojas and R. K. Bisht, Common fixed points for pairs of mappings with variable contractive parameters, Abstr. Appl. Anal., (2014), Article ID 209234, 7 pp.
  15. M. O. Olatinwo and M. Postolache, Stability results for Jungck-type iterative processes in convex metric paces, Appl. Math. Comput., 218(12)(2012), 6727-6732. https://doi.org/10.1016/j.amc.2011.12.038
  16. A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech.,47(1967), 77-81. https://doi.org/10.1002/zamm.19670470202
  17. V. Popa and M. Mocano, Altering distance and common fixed points under Implicit relations, Hacet. J. Math. Stat.,39(3)(2009), 329-337.
  18. A. Razani and M. Bagherboum, Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory Appl., (2013), 2013:331, 17 pp.
  19. B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4
  20. S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci., 19(2005), 3035-3043.
  21. W. Sintunavanat and P. K. Kumman, Common fixed point theorems for a pair of weakly compatible mappings in Fuzzy metric spaces, J. Appl. Math., (2011), Art. ID 637958, 14 pp.
  22. W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., 22(1970), 142-149. https://doi.org/10.2996/kmj/1138846111
  23. T. Zamfirescu, Fix point theorems in metric spaces, Arch. Math., 23(1972), 292-298. https://doi.org/10.1007/BF01304884