DOI QR코드

DOI QR Code

구체적 수학탐구활동 사례를 통한 학교현장 수학 탐구방법 탐색

A Study on Mathematical Investigation Activity through Using One Mathematical Fact

  • Suh, Bo Euk (Department of Mathematics Education, Chungnam National University)
  • 투고 : 2021.05.26
  • 심사 : 2021.06.23
  • 발행 : 2021.06.30

초록

본 연구는 학교현장의 수학탐구활동을 지원하기 위한 현장지원 연구이다. 수학탐구활동은 수학교사에게뿐 아니라, 학생에게도 매우 중요한 수학적 활동이다. '수학과제 탐구' 교과목이 생기고, 고교학점제, 자유학년제와 같은 다양한 수학적 활동이 강화되면서 이러한 경향은 더 강해지고 있다. 수학탐구활동은 전문수학자만의 고유영역이 아니며, 수학을 학습하는 그리고 수학을 지도하는 모든 평범한 사람에게도 동일하게 기회가 주어져 있다. 이에 본 현장지원 연구에서는 한 가지 수학적 사실을 기반으로 하는 구체적인 수학탐구활동을 기반으로, 현장 학교에서 교사 및 학생이 자발적으로 수행할 수 있는 수학탐구활동 방법을 제안하는 것을 연구의 목적으로 한다. 구체적으로 본 연구에서 선택한 한 가지 수학적 사실은 2015개정 수학과 교육과정에서 다시 추가된 내용요소인 코사인 법칙이다. 본 연구에서는 코사인 법칙을 기초로 여러 가지 수학탐구활동을 수행하였다. 이러한 수행 결과를 분석하여 현장에서 학교수학을 탐구하는 방법을 구체적으로 제안하였다. 본 연구의 결과를 통해 수학탐구활동이 수학교실에서 학생 및 교사에 의해 다양하고 활발하게 이루어지기를 기대한다.

This study is to support the school's mathematics exploration activities. Mathematics exploration is a very important mathematical activity not only for mathematics teachers, but also for students. Looking at the development of mathematics, it has been extended from one mathematical fact to a new mathematical fact. Mathematics exploration activities are not unique to mathematicians, and opportunities are equally given to all ordinary people who are learning mathematics and teaching mathematics. Therefore, the purpose of this study is to develop a method of mathematics exploration activities that teachers and students can perform in schools, based on mathematics exploration activities based on one mathematical fact. Specifically, the cosine law was selected as one mathematical fact, and mathematical exploration activities were performed based on the cosine law. By analyzing the results of these mathematics exploration activities, we developed a method to explore school mathematics. Through the results of this study, it is expected that mathematics exploration activities will be conducted equally by students and teachers in the mathematics classroom.

키워드

참고문헌

  1. Ministry of Education (2015). 2015 Revised National Curriculum of Mathematics, Ministry of Education Notice 2015-74
  2. Kwon, Y. I., Suh, B. E. (2004). Analysis of various proof methods of the second law of cosine, Communications of Mathematical Education, 18(2), 251-263.
  3. Kwon, Y. I., Suh, B. E. (2007). The Analysis of the Development Process of the Law of Cosines and the Study of the Extension through the Demonstration, Journal for History of Mathematics, 20(3), 147-166.
  4. Kim, K. S., Han, I. K. (2007). A Study on Investigating Various Properties of Triangle's Escribed Circle and Tetrahedron's Escribed Sphere, Communications of Mathematical Education, 21(3), 385-406.
  5. Kim, M. S., Han, I. K. (2007). A Study on Constructing Plane Section of Regular Tetrahedron and Regular Hexahedron Using Base Problems, The Mathematical Education, 46(3), 303-314.
  6. Park, K. M. et al. (2015). Development of revised mathematics course curriculum, Seoul: Korea Foundation for the advancement of science and creativity.
  7. Suh, B. E. (2013). Investigaton on middle school mathematics and curriculum for teachers, Seoul: KyoWooSa.
  8. Lee, K. S., Lim, H. M., Choi, I. S., & Kim, S. K. (2021). Theory and practice of evaluation in mathematics education, Seoul: KyoWooSa.
  9. Lee, J. W. (2002). The historical background and development of geometry, Seoul: Gyeongmunsa.
  10. Jung, H. Y., Lee, K. H., Baek, D. H. (2018). Design for Subject's Task Based on the Mathematical Modeling Perspective, School Mathematics, 20(1), 149-169. https://doi.org/10.29275/sm.2018.03.20.1.149
  11. Cheon, S. B., Lee, J. H., Kim, W. K. (2017). A Study on Development of Teaching and Learning Materials for Mathematics Project Inquiry Subject, The Mathematical Education, 56(3), 319-340. https://doi.org/10.7468/mathedu.2017.56.3.319
  12. Korea Foundation for the advancement of science and creativity (2019). Mathematics Project, Seoul: KOFAC
  13. Han, I. K. (2003a). A Study on the Educational Analysis of a Mathematical Problem and Systematization of Related Problems, The Mathematical Education, 42(1), 57-67.
  14. Han, I. K. (2003). Mathematics history for teacher, Seoul: KyoWooSa.
  15. Han, I. K. (2007). A Study on a Generalization of the Law of Cosine Using Vector, Communications of Mathematical Education, 21(1), 51-64.
  16. Hwang, H. J., Kim, J. M (2018). A Study on the Development of Instruction Model on Project inquiry and Materials for the New Subject of Mathematical Task Inquiry in the curriculum revised in 2015. Communications of mathematical education, 32(3), 363-383. https://doi.org/10.7468/JKSMEE.2018.32.3.363
  17. Brown, S. I. & Walter, M. I. (1990). The art of problem posing, Lawrence Erlbaum Associates Publishers.
  18. Lakatos, I. (1976). Proofs and Refutation-The logic of Mathematical Discovery, (우정호 역(1991). 수학적발견 의 논리, 서울:민음사.)
  19. Polya, G. (1973). Mathematics and Plausible Reasoning, Vol I, New York: Princeton University Press.
  20. The National Council of Teachers of Mathematics (1995). Assessment Standards for School Mathematics, Reston VA: NCTM.
  21. Thomas L. Heath.(Trans.) (1952). The Thirteen Books Of Euclid's Elements, London : Cambridge University Press.
  22. Web1 (2021). www.geocities.com/fredlb37/node16.html.