DOI QR코드

DOI QR Code

다양한 레이저 접합 공정 조건에 따른 Sn-57Bi-1Ag 솔더 접합부의 계면 및 기계적 특성

Interfacial and Mechanical Properties of Sn-57Bi-1Ag Solder Joint with Various Conditions of a Laser Bonding Process

  • Ahn, Byeongjin (Korea Institute of Industrial Technology (KITECH)) ;
  • Cheon, Gyeong-Yeong (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Jahyeon (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Jungsoo (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Min-Su (Korea Institute of Industrial Technology (KITECH)) ;
  • Yoo, Sehoon (Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University) ;
  • Ko, Yong-Ho (Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2021.05.06
  • 심사 : 2021.06.01
  • 발행 : 2021.06.30

초록

본 연구에서는 레이저 접합 공정을 이용하여 flame retardant-4 (FR-4) 인쇄회로기판 (printed circuit board, PCB)의 organic solderability preservative (OSP) 표면처리 된 Cu pad와 전자부품을 Sn-57Bi-1Ag 저온 솔더 페이스트로 접합을 한 후 접합부의 계면 특성과 기계적 특성에 대하여 보고 하였다. 레이저 접합 공정은 레이저 파워 및 시간 등을 다르게 진행하여 접합 공정 조건이 접합부의 계면 및 기계적 특성에 미치는 영향을 살펴보았다. 레이저 접합 공정의 산업적 적용을 위하여 산업적으로 많이 이용되고 있는 리플로우 접합 공정을 이용한 접합부의 특성과도 비교 하였다. 레이저 접합 공정 적용 결과 2, 3 s의 짧은 공정 시간에도 계면에 Cu6Sn5 금속간화합물 (intermetallic compound, IMC)를 생성하여 접합부를 안정적으로 형성함을 확인 하였다. 또한, 리플로우 공정과 비교해 보았을 때 레이저 접합 공정을 적용할 경우 접합부의 보이드 형성이 억제됨을 확인할 수 있었으며 접합부의 전단강도도 리플로우 공정 접합부보다 높은 기계적 강도를 나타냈다. 따라서, 레이저 접합 공정을 적용할 경우 짧은 접합 공정 시간에도 불구하고 안정적인 접합부 형성 및 높은 기계적 강도를 확보할 수 있는 것으로 기대된다.

In this study, interfacial properties and mechanical properties of joints were reported after Cu pads finished with organic solderability preservative (OSP) on flame retardant-4 (FR-4) printed circuit board (PCB) and electronic components were joined with a Sn-57Bi-1Ag solder paste by using a laser bonding process. The laser bonding process was performed under various bonding conditions with changing a laser power and a bonding time and effects of bonding conditions on interfacial and mechanical properties of joints were analyzed. In order to apply for industry, properties of bonding joints using a reflow bonding process which are widely used were compared. When the laser bonding process were performed, we observed that Cu6Sn5 intermetallic compounds (IMCs) were fully formed at the interface although the bonding times were very short about 2 and 3 s. Furthermore, void formations of the joints by using the laser bonding process were suppressed at the joints with comparing to the reflow bonding process and shear strengths of bonding joints were higher than that by using the reflow bonding process. Therefore, in spite of a very short bonding time, it is expected that joints will be stably formed and have a high mechanical strength by using the laser bonding process.

키워드

과제정보

본 논문은 한국생산기술연구원 기관주요사업 "제품생산 유연성 확보를 위한 뿌리공정기술 개발(KITECH EO-21-0008)"의 지원으로 수행한 연구입니다.

참고문헌

  1. C. Kanchanomai, Y. Miyashita and Y. Mutoh, "Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb", Int. J. Fatigue, 24, 671 (2002). https://doi.org/10.1016/S0142-1123(01)00186-4
  2. A. Sharif, Y. C. Chan and R. A. Islam, "Effect of volume in interfacial reaction between eutectic Sn-Pb solder and Cu metallization in microelectronic packaging", Mater. Sci. Eng., B106, 120 (2004).
  3. Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), The European Parliament and of the Council of the European Union, Jan. (2003).
  4. K. S. Kim, S. H. Huh and K. Suganuma, "Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints", J. Alloys Compd., 352, 226 (2003). https://doi.org/10.1016/S0925-8388(02)01166-0
  5. S. Choi, T. R. Bieler, J. P. Lucas and K. N. Subramanian, "Characterization of the Growth of Intermetallic Interfacial Layers of Sn-Ag and Sn-Pb Eutectic Solders and Their Composite Solders on Cu Substrate During Isothermal Long-Term Aging", J. Electron. Mater., 28(11), 1209 (1999). https://doi.org/10.1007/s11664-999-0159-y
  6. J. W. Yoon, S. W. Kim, J. M. Koo, D. G. Kim and S. B. Jung, "Reliability Investigation and Interfacial Reaction of BallGrid-Array Packages Using the Lead-Free Sn-Cu Solder", J. Electron. Mater., 33(10), 1190 (2004). https://doi.org/10.1007/s11664-004-0122-x
  7. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer and M. Fine, "Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders", J. Electron. Mater., 26(7), 783 (1997). https://doi.org/10.1007/s11664-997-0252-z
  8. R. Mahmudi, A. R. Geranmayeh, S. R. Mahmoodi and A. Khalatbari, "Room-temperature indentation creep of lead-free Sn-Bi solder alloys", J. Mater. Sci.: Mater. Electron, 18, 1071 (2007).
  9. J. W. Yoon, Y. H. Lee, D. G. Kim, H. B. Kang, S. J. Suh, C. W. Yang, C. B. Lee, J. M. Jung, C. S. Yoo and S. B. Jung, "Intermetallic compound layer growth at the interface between Sn-Cu-Ni solder and Cu substrate", J. Alloys Compd., 381, 151 (2004). https://doi.org/10.1016/j.jallcom.2004.03.076
  10. T. Plookphol, S. Wisutmethangoon and S. Gonsrang, "Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization", Powder Technol., 214, 506 (2011). https://doi.org/10.1016/j.powtec.2011.09.015
  11. H. P. Shin, B. W. Ahn, J. H. Ahn, J. G. Lee, K. S. Kim, D. H. Kim and S. B. Jung, "Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate(in korean)", J. Microelectron. Packag. Soc., 30(5), 458 (2012).
  12. J. H. Kim, Y. C. Lee, S. M. Lee and S. B. Jung, "Effect of surface finishes on electromigration reliability in eutectic Sn- 58Bi solder joints", Microelectron. Eng., 120, 77 (2014). https://doi.org/10.1016/j.mee.2013.12.006
  13. W. R. Myung, Y. Kim and S. B. Jung, "Mechanical property of the epoxy-contained Sn-58Bi solder with OSP surface finish", J. Alloys Compd., 615, S411 (2014). https://doi.org/10.1016/j.jallcom.2014.01.078
  14. X. Chen, F. Xue, J. Zhou and Y. Yao, "Effect of In on microstructure, thermodynamic characteristic and mechanical properties of Sn-Bi based lead-free solder", J. Alloys Compd., 633, 377 (2015). https://doi.org/10.1016/j.jallcom.2015.01.219
  15. O. Mokhtari and H. Nishikawa, "Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint", J. Electron. Mater., 43(11), 4158 (2014). https://doi.org/10.1007/s11664-014-3359-z
  16. L. Jiang and N. Chawla, "Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing", Scr. Mater., 63, 480 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.009
  17. K. S. Choi, J. Joo, K. S. Jang, G. M. Choi, H. G. Yun, S. H. Moon and Y. S. Eom, "Laser-Assisted Bonding (LAB), Its Bonding Materials, and Their Applications(in korean)", J. Welding and Joining, 38(2), 138 (2020).
  18. S. J. Hwang, H. J. Kang, J. O. Kim and J. P. Jung, "Laser Micro-Joining and Soldering(in korean)", J. Microelectron. Packag. Soc., 26(3), 7 (2019).
  19. S. J. Hwang, S. V. Hwang and J. P. Jung, "Laser Micro Soldering and Soldering Factors(in korean)", J. Microelectron. Packag. Soc., 27(3), 1 (2020). https://doi.org/10.6117/KMEPS.2020.27.3.001
  20. J. Joo, Y. S. Eom, K. S. Jang, G. M. Choi and K. S. Choi, "Development of bonding process for flexible devices with fine-pitch interconnection using Anisotropic Solder Paste and Laser-Assisted Bonding Technology", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 1309 (2020).
  21. H. S. Joo, K. D. Min, C. J. Lee, B. U. Hwang and S. B. Lee, "Growth kinetics of intermetallic compound layers at the interface during laser-assisted bonding depending on surface finish", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 1916 (2020).
  22. J. Kim, W. R. Myung and S. B. Jung, "Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB(in korean)", J. Microelectron. Packag. Soc., 21(4), 97 (2014). https://doi.org/10.6117/kmeps.2014.21.4.097
  23. M. Onishi and H. Fujibuchi, "Reaction-Diffusion in the CuSn System", J. Japan Inst. Merals., 16, 9 (1975).