• Title/Summary/Keyword: mechanical property

Search Result 3,508, Processing Time 0.028 seconds

Manufacturing Technology of Thin Foil Tensile Specimen Using Cold Isostatic Press and Precision Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시험시편 가공기술 및 정밀 기계적 물성 측정기술)

  • Lee H. J.;Park H. J.;Lee N. K.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.245-248
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical property. This thin foil tensile specimen manufacturing technology is a method that can make a metal thin foil specimen for micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect that precision mechanical property of micro/nano material and component. Micro and Nano mechanical property can be measured using this technology and mechanical property data base of micro/nano material and component can be constructed.

  • PDF

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

The Sense of Touch of Man-made Leather (인조피혁의 촉감평가)

  • 이정순;신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.2
    • /
    • pp.277-285
    • /
    • 2000
  • The purpose of this study was to quantify the relationship between the sense of touch and mechanical properties of man-made leather. The first was to develop the five conversion equations which convert mechanical properties of man-made leather into five factor scores, which express five factors of the sense of touch(surface property, stretchiness, thickness & weight, thermal property(warmth & coolness), and moisture property(sticky & clingy)). The second was to develop the conversion equation which converts five factor scores into score of the sense of touch. Five factor scores were predicted by the following mechanical properties; surface property factor by log2HB and (log2HB)2, stretchiness factor by logEM, thickness & weight factor by logT, log2HB, logW, thermal property factor by logT, logHB, logSMd, and moisture property factor by logMMD, RC, RC2, (logEM)2, RT2. Subsequently, these five factor scores were converted into score of the sense of touch. The predictive abilities of the developed equations were satisfied.

  • PDF

Soil Compaction Management Methodology using Mechanical Property (역학적 정수를 이용한 다짐관리기법에 관한 연구)

  • 강규진;최준성;김종민;노한성;김태수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.127-132
    • /
    • 2002
  • While the pavement design is based on mechanical property such dynamic elastic modulus, the quality of highway subgrade during construction is controled by the optimum moisture content(OMC) and maximum dry density(${\gamma}$$\_$dmax/). However, since the quality control based on the OMC and maximum dry density does not consider the mechanical characteristics, there is a conceptional gap between design and PMS(pavement management system). Therefore, it is necessary to develope a new qualify control system using mechanical property for highway construction in more rational way. To achieve this goal, it is planned to perform various laboratory tests to collect mechanical properties of subgrade soil samples from several highway construction sites and to propose the relationship between dry unit weight (or OMC) and mechanical parameters. In this paper, the experimental data so far obtained are presented and analyzed. In addition, further research plan is presented and discussed.

  • PDF

Transcription Mechanism of Minute Surface Pattern in Injection Molding

  • YASUHARA Toshiyuki;KATO Kazunori;IMAMURA Hiroshi;OHTAKE Naoto
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.1-6
    • /
    • 2003
  • In injection molding of an optical disk, a toric lens, etc., their performance depends on the transcription preciseness of fine surface structure of a mold. However, transcription behavior has not been made clear yet, because transcription is made in very short time and the structure is very small. In this paper, transcription properties have been examined, by using V-grooves of various sizes. machined on mold surfaces, and the following results are obtained. (1) Transcription properties have been made clear experimentally and it was found that the mold temperature $T_D$ makes great influence on the transcription property and that compression applying time $t_c$ should be taken more than 2.0s for fine transcription. (2) A mechanical model of transcription process, in consideration with strain recovery due to viscoelastic property of polymer. is proposed. (3) Simulation results agree with experimental ones fairly well. It means that the transcription model is useful for estimation of transcription property in advance of an actual. injection molding.

  • PDF

THE INVESTIGATION OF PSEUDOELASTIC NITI WIRES FOR DAMPING USES

  • Pan, Qiang;Cho, Chong-Du;Lu, Sheng
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.154-159
    • /
    • 2007
  • Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its instinct characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. Previous researches found the NiTi wires own higher damping property than the bars; therefore the wire form is adopted in this study. A loss factor is introduced for measuring the damping property of the NiTi wires. The experimental observation shows the mechanical behaviors of NiTi wires are dependent on temperature, strain rate and strain amplitude. Moreover, it is found the first several decades of loading-unloading cycles can obviously influence the property of NiTi wires under the same working conditions.

  • PDF

Manufacturing Technology of Thin Foil Tensile Specimen Using CIP and Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시편의 가공 및 기계적 물성측정 기술)

  • Lee N.K.;Park H. J.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.;Lee H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.509-513
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical properties using micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect precision mechanical property of micro/nano material and component.

Effect of Plasma Surface Treatment on Electrical and Mechanical Properties of Poly(ethylene terephthalate ) Film (플라즈마 표면처리가 Poly(ethylene terephthalate) 필름의 전기적 및 기계적 성질에 미치는 영향)

  • 임경범;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.61-67
    • /
    • 2001
  • In this study the electrical and mechanical characteristics of PET films ore analyzed after plasma surface treatment. After plasma treatment, the surface potential decay, surface potential and dielectric property were evaluated to analyze the electrical insulating property, and the tensile strength was measured as the mechanical characteristic. When plasma treatment was conducted for less than 10 minutes, it was found that the electrical insulating property was improved through evaporation of low molecular weight materials md cleaning of surface. However, for more than 10 minutes, the insulating property of plasma treated PET films was decreased due to excessive discharge energy. The tensile strength was hardly changed by Plasma treatment.

  • PDF

A Study of Effects Exerted on the Mechanical Properties of the Steel and Cast Iron by the Adding B (B첨가에 의한 강 및 주철의 기계적 성질에 미치는 효과)

  • 황용연;권오헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2368-2373
    • /
    • 1994
  • The advancement of the mechanical properties of metal materials caused by a recent high technology contributes to the stability and productivity of mechanical structures. However, the advanced mechanical properties depends on the conditions of crystal boundaries and the improvement of the texture. Although the tensile strength and a hardness of a steel would be increased by the adding B, it seems to be a marked decreases of the toughness which caused in the weaken workability. This study is concerned with a characteristics of the B compound which will be mixed with $H_3BO_3$ and the metallic magnesium. What affected in the mechanical property and texture is checked by the strength and the texture test. As a result, it is shown that the improvement of the mechanical property and the texture homogeneity. In addition, it seems that a molten metal which is added by the B compound is deoxized and cleansed.

Estimation of Bituminous Concrete Property Based on Molecular Size Distribution of Asphalt Cement (아스팔트 시멘트의 분자립도 분포특성에 따른 아스팔트의 성질분석)

  • 김광우;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1991
  • Moleclar size distribution of three AC-20 asphalt cements were observed using high pressure - gel permeation chromatograph (HP-GPC). Bituminous concrete specimens were made using the asphalt cements and one aggre¬gate in laboratory to measure mechanical properties, tensile strength CIS) and resilient modulusCM,J. in dry and wet conditons. Results of mechanical property tests and profile of molecular size distribution of asphalt cements were analyzed to evaluate the relatonship of mechanical property with chromatogram. Regression analy¬sis showed a strong correlation between a mechanical property and sliced percent areas of chromatogram. Mathematical prediction models were developed based on the regression analysis. It was shown that characteris¬tics of asphalt cement chromatogram could be successfully used for estimation of selected mechanical property of asphalt concrete .